An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5014117 | PMC |
http://dx.doi.org/10.1098/rspa.2016.0438 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!