Effects of Panax ginseng, zearalenol, and estradiol on sperm function.

J Ginseng Res

ART Laboratories, Department of Obstetrics and Gynecology, Greenville Health System University Medical Group, Greenville, SC, USA.

Published: July 2016

Background: Estrogen signaling pathways are modulated by exogenous factors. Panax ginseng exerts multiple activities in biological systems and is classified as an adaptogen. Zearalenol is a potent mycoestrogen that may be present in herbs and crops arising from contamination or endophytic association. The goal of this study was to investigate the impact of P. ginseng, zearalenol and estradiol in tests on spermatozoal function.

Methods: The affinity of these compounds for estrogen receptor (ER)-alpha and beta (ERα and ERβ)-was assessed in receptor binding assays. Functional tests on boar spermatozoa motility, movement and kinematic parameters were conducted using a computer-assisted sperm analyzer. Tests for capacitation, acrosome reaction (AR), and chromatin decondensation in spermatozoa were performed using microscopic analysis.

Results: Zearalenol-but not estradiol (E2)- or ginseng-treated spermatozoa-decreased the percentage of overall, progressive, and rapid motile cells. Zearalenol also decreased spontaneous AR and increased chromatin decondensation. Ginseng decreased chromatin decondensation in response to calcium ionophore and decreased AR in response to progesterone (P4) and ionophore.

Conclusion: Zearalenol has adverse effects on sperm motility and function by targeting multiple signaling cascades, including P4, E2, and calcium pathways. Ginseng protects against chromatin damage and thus may be beneficial to reproductive fitness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005360PMC
http://dx.doi.org/10.1016/j.jgr.2015.08.004DOI Listing

Publication Analysis

Top Keywords

chromatin decondensation
12
panax ginseng
8
zearalenol estradiol
8
zearalenol
5
effects panax
4
ginseng
4
ginseng zearalenol
4
estradiol sperm
4
sperm function
4
function background
4

Similar Publications

Type I IFN-mediated NET release promotes Mycobacterium tuberculosis replication and is associated with granuloma caseation.

Cell Host Microbe

December 2024

Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:

Neutrophils are the most abundant cell type in the airways of tuberculosis patients. Mycobacterium tuberculosis (Mtb) infection induces the release of neutrophil extracellular traps (NETs); however, the molecular regulation and impact of NET release on Mtb pathogenesis are unknown. We find that during Mtb infection in neutrophils, PAD4 citrullinates histones to decondense chromatin that gets released as NETs in a manner that can maintain neutrophil viability and promote Mtb replication.

View Article and Find Full Text PDF

Platelets accelerate lipid peroxidation and induce pathogenic neutrophil extracellular trap release.

Cell Chem Biol

December 2024

Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. Electronic address:

Neutrophil extracellular traps (NETs), an important host defense mechanism, are assembled after the release of decondensed chromatin and other nuclear components by a process termed NETosis. However, excessive NET release destroys surrounding tissues, leading to conditions such as sepsis where platelets are implicated in the pathogenic switch of NETosis. Here, we show that platelets trigger iron accumulation and promote lipid peroxide production in neutrophils co-stimulated with lipopolysaccharide and platelets in vitro, resulting in the induction of NETosis.

View Article and Find Full Text PDF

Background: In the twentieth century, the textbook idea of packaging genomic material in the cell nucleus and metaphase chromosomes was the presence of a hierarchy of structural levels of chromatin organization: nucleosomes - nucleosomal fibrils -30 nm fibrils - chromomeres - chromonemata - mitotic chromosomes. Chromomeres were observed in partially decondensed chromosomes and interphase chromatin as ~100 nm globular structures. They were thought to consist of loops of chromatin fibres attached at their bases to a central protein core.

View Article and Find Full Text PDF

Quantitative Live-Cell Imaging to Study Chromatin Segregation and Nuclear Reformation.

Methods Mol Biol

November 2024

Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany.

Live-cell imaging is a powerful tool for the investigation of different steps of the life and fate of single cells and cell populations. In this chapter, we describe how to perform live-cell imaging in tissue culture cells and the subsequent image analysis to precisely characterize the cytological events occurring during mitotic exit and nuclear reformation.

View Article and Find Full Text PDF
Article Synopsis
  • Jumping translocations (JT), linked to disease progression in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), involve the movement of a tri-tetra-somic 1q chromosome to various other chromosomes.
  • Research showed that in patients with SRSF2 mutations, JT was associated with changes in DNA methylation during treatment with 5'-azacytidine (AZA), revealing significant shifts in the methylome and impacting various biological pathways.
  • The study highlighted that epigenetic modifications, including changes in DNA methylation and specific signaling pathways like PI3K/AKT and MAPK, play a crucial role in the progression of myeloid neoplasms associated with
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!