Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chaperone-usher (CU) fimbriae, which are adhesive surface organelles found in many Gram-negative bacteria, mediate tissue tropism through the interaction of fimbrial adhesins with specific receptors expressed on the host cell surface. A CU fimbrial gene yfcO, was identified in avian pathogenic E. coli (APEC) strain DE205B via gene functional analysis. In this study, yfcO was found in 13.41% (11/82) of E. coli strains, including phylogenetic groups A, B1, B2 and D, with the highest percentage in group B2. The expression of yfcO in biofilm forming bacteria was significantly higher (P < 0.05) than that in the planktonic bacteria. A yfcO deletion mutant was constructed, and adherence to DF-1 chicken embryo fibroblast cells was analyzed in vitro. Compared to the wild-type (WT), adherence of the mutant to DF-1 cells was significantly decreased (P < 0.01). The mutant bacterial loads in the heart, brain and liver were significantly lower (P < 0.05) than those of the WT strain. Resistance of the mutant to acidic (acetic, pH 4.0, 20 min) and high osmolarity (2.5 M NaCl, 1 h) stress conditions decreased by 51.28% (P < 0.001) and 80.34% (P < 0.01), respectively. These results suggest that yfcO contributes to APEC virulence through bacterial adherence to host tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2016.09.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!