Solvent-Free Ring-Opening Metathesis Polymerization of Norbornene over Silica-Supported Tungsten-Oxo Perhydrocarbyl Catalysts.

Macromol Rapid Commun

Laboratoire de Chimie, Catalyse, Polymères et Procédés, UMR 5265 CNRS/ESCPE-Lyon/UCBLESCPE Lyon, F-308-43, Boulevard du 11 Novembre 1918, F-69616, Villeurbanne Cedex, France.

Published: November 2016

Ring opening metathesis polymerization (ROMP) of bicyclo[2.2.1]hept-2-ene (norbornene) is carried out over silica-supported catalysts based on tungsten complexes bearing an oxo ligand (1: [(SiO)W(O)(CH SiMe ) , 2: [(SiO)W(O)(CHCMe Ph)(dAdPO)], dAdPO  2,6 diadamantyl-4-methylphenoxide, 3: [(SiO) W(O)(CH SiMe ) ]). The evaluation of the catalytic activities of the aforementioned materials in ROMP indicates that at low reaction time (0.5 min), the highest polymer yield is obtained with catalyst 2. However, for longer reaction time (>2 min), complex 3, a model of the industrial catalyst, exhibits a better monomer conversion. The polymers obtained are characterized. Moreover, these catalysts are shown to be rather preferentially selective to give the cis polynorbornene (>65%), characterized by high melting points (≈300 °C). The experimental values of the average molecular weight (M ) of polynorbornenes are found to be close to the theoretical ones for the polymers prepared using catalyst 2 and higher for those originated from catalyst 3.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201600419DOI Listing

Publication Analysis

Top Keywords

metathesis polymerization
8
reaction time
8
time min
8
solvent-free ring-opening
4
ring-opening metathesis
4
polymerization norbornene
4
norbornene silica-supported
4
silica-supported tungsten-oxo
4
tungsten-oxo perhydrocarbyl
4
perhydrocarbyl catalysts
4

Similar Publications

Ring expansion metathesis polymerization (REMP) has emerged as a potent strategy for obtaining cyclic polymers over the past two decades. The scope of monomers, however, remains limited due to the poor functional group tolerance and stability of the catalyst, necessitating a rational catalyst design to address this constraint. Here, we present ruthenium complexes featuring tethered cyclic (alkyl)(amino)carbene ligands for REMP, aiming to deepen our understanding of the structure-property relationship in newly designed catalysts.

View Article and Find Full Text PDF
Article Synopsis
  • Bottlebrush block polymers feature densely grafted side chains from a backbone, allowing for large ordered morphologies suitable for applications like photonic crystals.
  • The study focused on creating a library of 50 triblock terpolymers (PLA-PEP-PS) through advanced polymerization techniques, leading to structures with complex phase behaviors.
  • Results indicated diverse mesoscopic structures and tunable unit cell dimensions, showcasing the potential of multiblock bottlebrushes for varied material applications.
View Article and Find Full Text PDF

Structurally tailored and engineered macromolecular (STEM) networks are attractive materials for soft robotics, stretchable electronics, tissue engineering, and 3D printing due to their tunable properties. To date, STEM networks have been synthesized by atom transfer radical polymerization (ATRP) or the combination of reversible addition-fragmentation chain-transfer (RAFT) polymerization and ATRP. RAFT polymerization could have limited selectivity with ATRP inimer sites that can participate in radical-transfer processes.

View Article and Find Full Text PDF

Probe-Based Mechanical Data Storage on Polymers Made by Inverse Vulcanization.

Adv Sci (Weinh)

December 2024

Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.

Big data and artificial intelligence are driving increasing demand for high-density data storage. Probe-based data storage, such as mechanical storage using an atomic force microscope tip, is a potential solution with storage densities exceeding hard disks. However, the storage medium must be modifiable on the nanoscale.

View Article and Find Full Text PDF

Carbosiloxane Bottlebrush Networks for Enhanced Performance and Recyclability.

Macromolecules

November 2024

Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States.

Silicone bottlebrush copolymers and networks derived from cyclic carbosiloxanes are reported and shown to have enhanced properties and recyclability compared with traditional dimethylsiloxane-based materials. The preparation of these materials is enabled by the synthesis of well-defined heterotelechelic macromonomers with Si-H and norbornene chain ends via anionic ring-opening polymerization of the hybrid carbosiloxane monomer 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane. These novel heterotelechelic α-Si-H/ω-norbornene macromonomers undergo efficient ring-opening metathesis copolymerization to yield functional bottlebrush polymers with accurate control over molecular weight and functional-group density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!