Malaria is a life-threatening disease caused by different species of the protozoan parasite Plasmodium, with P. falciparum being the deadliest. Increasing parasitic resistance to existing antimalarials makes the necessity of novel avenues to treat this disease an urgent priority. The enzymes responsible for the synthesis of phosphatidylcholine and phosphatidylethanolamine are attractive drug targets to treat malaria as their selective inhibition leads to an arrest of the parasite's growth and cures malaria in a mouse model. We present here a detailed study that reveals a mode of action for two P. falciparum choline kinase inhibitors both in vitro and in vivo. The compounds present distinct binding modes to the choline/ethanolamine-binding site of P. falciparum choline kinase, reflecting different types of inhibition. Strikingly, these compounds primarily inhibit the ethanolamine kinase activity of the P. falciparum choline kinase, leading to a severe decrease in the phosphatidylethanolamine levels within P. falciparum, which explains the resulting growth phenotype and the parasites death. These studies provide an understanding of the mode of action, and act as a springboard for continued antimalarial development efforts selectively targeting P. falciparum choline kinase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018819 | PMC |
http://dx.doi.org/10.1038/srep33189 | DOI Listing |
Methods Enzymol
June 2024
School of Chemistry, Cardiff University, Cardiff, United Kingdom. Electronic address:
Chemoenzymatic synthesis of non-natural terpenes using the promiscuous activity of terpene synthases allows for the expansion of the chemical space of terpenoids with potentially new bioactivities. In this report, we describe protocols for the preparation of a novel aphid attractant, (S)-14,15-dimethylgermacrene D, by exploiting the promiscuity of (S)-germacrene D synthase from Solidago canadensis and using an engineered biocatalytic route to convert prenols to terpenoids. The method uses a combination of five enzymes to carry out the preparation of terpenoid semiochemicals in two steps: (1) diphosphorylation of five or six carbon precursors (prenol, isoprenol and methyl-isoprenol) catalyzed by Plasmodium falciparum choline kinase and Methanocaldococcus jannaschii isopentenyl phosphate kinase to form DMADP, IDP and methyl-IDP, and (2) chain elongation and cyclization catalyzed by Geobacillus stearothermophilus (2E,6E)-farnesyl diphosphate synthase and S.
View Article and Find Full Text PDFBMC Chem
March 2024
Department of Pharmacognosy, Faculty of Pharmacy, MUST, Giza, 12566, Egypt.
Nat Microbiol
July 2023
Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
For Plasmodium falciparum, the most widespread and virulent malaria parasite that infects humans, persistence depends on continuous asexual replication in red blood cells, while transmission to their mosquito vector requires asexual blood-stage parasites to differentiate into non-replicating gametocytes. This decision is controlled by stochastic derepression of a heterochromatin-silenced locus encoding AP2-G, the master transcription factor of sexual differentiation. The frequency of ap2-g derepression was shown to be responsive to extracellular phospholipid precursors but the mechanism linking these metabolites to epigenetic regulation of ap2-g was unknown.
View Article and Find Full Text PDFMethods Enzymol
January 2023
Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States. Electronic address:
Phospholipids play an essential role as a barrier between cell content and the extracellular environment and regulate various cell signaling processes. Phosphatidylcholine (PtdCho) is one of the most abundant phospholipids in plant, animal, and some prokaryote cell membranes. In plants and some parasites, the biosynthesis of PtdCho begins with the amino acid serine, followed mainly through a phosphoethanolamine N-methyltransferase (PMT)-mediated biosynthetic pathway to phosphocholine (pCho).
View Article and Find Full Text PDFParasit Vectors
January 2023
Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel.
Background: Plasmodium falciparum (Pf) is the leading protozoan causing malaria, the most devastating parasitic disease. To ensure transmission, a small subset of Pf parasites differentiate into the sexual forms (gametocytes). Since the abundance of these essential parasitic forms is extremely low within the human host, little is currently known about the molecular regulation of their sexual differentiation, highlighting the need to develop tools to investigate Pf gene expression during this fundamental mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!