Ethnopharmacological Relevance: Tabernaemontana elegans Stapf. (Apocynaceae) is a medicinal plant traditionally used in African countries to treat cancer.
Aims Of The Study: To discover new apoptosis inducing lead compounds from T. elegans and provide scientific validation of the ethnopharmacological use of this plant.
Materials And Methods: Through fractionation, (3'R)-hydroxytaberanelegantine C (1), a vobasinyl-iboga bisindole alkaloid, was isolated from a cytotoxic alkaloid fraction of the methanol extract of T. elegans roots. Its structure was identified by spectroscopic methods, mainly 1D and 2D NMR experiments. Compound 1 was evaluated for its ability to induce apoptosis in HCT116 and SW620 colon and HepG2 liver carcinoma cells. The cell viability of compound 1 was evaluated by the MTS and lactate dehydrogenase (LDH) assays. Induction of apoptosis was analyzed through Guava ViaCount assay, by flow cytometry, caspase-3/7 activity assays and evaluation of nuclear morphology by Hoechst staining. To determine the molecular pathways elicited by 1 exposure, immunoblot analysis was also performed.
Results: (3'R)-hydroxytaberanelegantine C (1) displayed strong apoptosis induction activity as compared to 5-fluorouracil (5-FU), the most used anticancer agent in colorectal cancer treatment. In the MTS assay, compound 1 exhibited IC values similar or lower than 5-FU in the three cell lines tested. The IC value of 1 was also calculated in CCD18co normal human colon fibroblasts. The lactate dehydrogenase assay showed increased LDH release by compound 1, and the Guava ViaCount assay revealed that 1 significantly increased the incidence of apoptosis to a further extent than 5-FU. Moreover, the induction of apoptosis was corroborated by evaluation of nuclear morphology by Hoechst staining and caspase-3/7 activity assays of 1 treated cells. As expected, in immunoblot analysis, compound 1 treatment led to poly(ADP-ribose) polymerase cleavage. This was accompanied by decreased anti-apoptotic proteins Bcl-2 and XIAP steady state levels in all three cancer cell lines tested.
Conclusions: Compound 1 showed remarkable induction of apoptosis in HCT116, SW620 and HepG2 cells. Together, the results suggest that compound 1 is a promising lead structure for inducing apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2016.09.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!