Background: Under physiological cerebral conditions, levosimendan, a calcium-channel sensitizer, has a dose-dependent antagonistic effect on prostaglandin F2alpha (PGF)-induced vasoconstriction. This circumstance could be used in antagonizing delayed cerebral vasospasm (dCVS), one of the main complications after subarachnoid hemorrhage (SAH), leading to delayed cerebral ischemia and ischemic neurological deficits. Data already exist that identified neuroprotective effects of levosimendan in a traumatic brain injury model and additionally, it has been proven that this compound prevents narrowing of the basilar artery (BA) luminal area after SAH in an in vitro rabbit model. Takotsubo cardiomyopathy, a severe ventricular dysfunction, is also a well-known complication after SAH, associated with pulmonary edema and prolonged intubation.
Methods: The polypeptide endothelin-1 (ET-1) plays a key role in the development of dCVS after SAH. Therefore, the aim of the present investigation was to detect functional interactions between the calcium-sensitizing and the ET-1-dependent vasoconstriction after experimental-induced SAH; interactions between levosimendan and a substrate-specific vasorelaxation in the BA were also examined. It was reviewed whether levosimendan has a beneficial influence on endothelin(A) and/or endothelin(B) receptors (ET-(A) and ET-(B) receptors) in cerebral vessels after SAH. We also examined whether this drug could have antagonistic effects on a PGF-induced vasoconstriction.
Results: Under treatment with levosimendan after SAH, the endothelin system seems to be affected. The ET-1-induced contraction is decreased, not significantly. In addition, we detected changes in the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway. Preincubation with levosimendan causes a modulatory effect on the ET-(B) receptor-dependent vasorelaxation. It induces an upregulation of the NO-cGMP pathway with a significantly increased relaxation. Even after PGF-induced precontraction a dose-dependent relaxation was registered, which was significantly higher (E) and earlier (pD) compared to the concentration-effect curve without levosimendan.
Conclusions: After experimental-induced dCVS, levosimendan seems to restore the well-known impaired function of the vasorelaxant ET-(B) receptor. Levosimendan also reversed the PGF-induced contraction dose-dependently. Both of these mechanisms could be used for antagonizing dCVS in patients suffering SAH. Levosimendan could even be used additionally in treating patients developing takotsubo cardiomyopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00701-016-2939-5 | DOI Listing |
Neuroimage
January 2025
Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, (TN), Italy.
Transcranial magnetic stimulation (TMS) has the potential to yield insights into cortical functions and improve the treatment of neurological and psychiatric conditions. However, its reliability is hindered by a low reproducibility of results. Among other factors, such low reproducibility is due to structural and functional variability between individual brains.
View Article and Find Full Text PDFActa Biomater
January 2025
School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China. Electronic address:
Following cerebral ischemia, reperfusion injury can worsen ischemia-induced functional, metabolic disturbances, and pathological damage upon blood flow restoration, potentially leading to irreversible harm. Yet, there's a dearth of advanced, localized drug delivery systems ensuring active pharmaceutical ingredient (API) efficacy in cerebral protection during ischemia-reperfusion. This study introduces a multivalent bioadhesive nanoparticle-cluster, merging bioadhesive nanoparticles (BNPs) with dendritic polyamidoamine (PAMAM), enhancing nose-to-brain delivery and brain protection efficacy against cerebral ischemia-reperfusion injuries (CIRI).
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu, China.
Background: Type A aortic dissection (TAAD) remains a significant challenge in cardiac surgery, presenting high risks of adverse outcomes such as permanent neurological dysfunction and mortality despite advances in medical technology and surgical techniques. This study investigates the use of quantitative electroencephalography (QEEG) to monitor and predict neurological outcomes during the perioperative period in TAAD patients.
Methods: This prospective observational study was conducted at the hospital, involving patients undergoing TAAD surgery from February 2022 to January 2023.
Metab Brain Dis
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
This research seeks to address the gap in past studies by examining the role of the Nrf2 (nuclear factor erythroid 2-related factor 2) and HO-1 (heme oxygenase-1) signaling pathways in hypoxia and the potential effects of alpha-pinene on these factors. Wistar rats were divided into 7 experimental groups (n = 7): 1) control, 2 and 3) groups receiving alpha-pinene 5 and 10 mg/kg (i.p.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Xicheng District, Beijing, China.
Alzheimer's disease (AD) is a degenerative disease characterized by progressive cognitive dysfunction. The strong link between nutrition and the occurrence and progression of AD pathology has been well documented. Poor nutritional status accelerates AD progress by potentially aggravating amyloid beta (Aβ) and tau deposition, exacerbating oxidative stress response, modulating the microbiota-gut-brain axis, and disrupting blood-brain barrier function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!