Background/aims: Liver X receptor (LXR), a member of the nuclear receptor superfamily, is known to induce the expression of SREBP-1c and ChREBP, two master regulators of hepatic lipogenesis. Histone deacyetylases (HDACs) have been shown to play critical roles in glucose and lipids metabolism. However, the exact role of HDAC5 in lipogenesis remains elusive.
Methods: mRNA and protein levels of HDAC5 were analyzed by quantitative real-time PCR and Western blots in high-fat-diet-induced and leptin receptor deficiency-induced obese mice. HDAC5 was overexpressed or depleted in HepG2 cells, followed by analysis of cellular triglycerides contents. Quantitative real-time PCR was used to detect the expression levels of lipogenic genes. Luciferase reporter assay was used to determine the regulation of HDAC on the transcriptional activity of LXR. Co-immunoprecipitation experiment was used to determine the interaction between HDAC5 and LXR.
Results: We found that mRNA and protein expression levels of hepatic HDAC5 were reduced in high-fat-diet-induced and leptin receptor deficiency-induced obese mice. In vitro studies further demonstrated that knockdown of HDAC5 promoted cellular triglycerides accumulation, accompanied with up-regulation of lipogenic genes. At the molecular level, HDAC5 was shown to interact with LXR, thereby attenuating its transcriptional activity.
Conclusion: Overall, our data suggest that hepatic HDAC5 is an important regulator of lipogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000447858 | DOI Listing |
Zhejiang Da Xue Xue Bao Yi Xue Ban
January 2025
School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
Objectives: To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX.
Methods: The brown cocktail method was employed to induce 3T3-L1 MBX cells to differentiate into beige adipocytes. The impact of pachymic acid on the viability of 3T3-L1 MBX preadipocytes was evaluated using the CCK-8 assay.
Biochem Biophys Res Commun
January 2025
Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan; Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan. Electronic address:
Hepatic de novo lipogenesis (DNL) is increased by both carbohydrate intake and protein consumption. In hepatic fat synthesis, a key role is played by the induction of the hepatic expression of lipogenic genes, including Fasn, Scd1, and Srebf1. Regarding carbohydrate intake, increased blood glucose and insulin levels promote the expression of hepatic lipogenic genes.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
This study was performed to reveal the metabolic effects and molecular mechanisms that govern the dietary incorporation of clenbuterol on growth performance, haemato-biochemical changes, histological alteration, and gene expression regulating glucose and lipid metabolism in normal and high-fat diets fed in Nile tilapia (Oreochromis niloticus). Six experimental diets were formulated, incorporating different concentrations of clenbuterol. The 1st three groups were supplemented with a diet comprising 6% fat, with clenbuterol of 0, 5, and 10 g/kg diet was designated as F6 clenb0, F6clenb5, and F6clenb10, respectively.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China.
Proper differentiation of bone marrow stromal cells (BMSCs) into adipocytes is crucial for maintaining skeletal homeostasis. However, the underlying regulatory mechanisms remain incompletely understood, posing a challenge for the treatment of age-related osteopenia and osteoporosis. Here, through comprehensive gene expression analysis during BMSC differentiation into adipocytes, we identified the forkhead transcription factor Foxk2 as a key regulator of this process.
View Article and Find Full Text PDFbioRxiv
December 2024
Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR.
Background: Cachexia is defined by chronic loss of fat and muscle, is a frequent complication of pancreatic ductal adenocarcinoma (PDAC), and negatively impacts patient outcomes. Nutritional supplementation cannot fully reverse tissue wasting, and the mechanisms underlying this phenotype are unclear. This work aims to define the relative contributions of catabolism and anabolism to adipose wasting in PDAC-bearing mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!