Guanosine-5'-monophosphate reductase (GMPR) catalyzes the reduction of GMP to IMP and ammonia with concomitant oxidation of NADPH. Here we investigated the structure and dynamics of enzyme-bound substrates and cofactors by measuring P relaxation rates over a large magnetic field range using high resolution field cycling NMR relaxometry. Surprisingly, these experiments reveal differences in the low field relaxation profiles for the monophosphate of GMP compared with IMP in their respective NADP complexes. These complexes undergo partial reactions that mimic different steps in the overall catalytic cycle. The relaxation profiles indicate that the substrate monophosphates have distinct interactions in E·IMP·NADP and E·GMP·NADP complexes. These findings were not anticipated by x-ray crystal structures, which show identical interactions for the monophosphates of GMP and IMP in several inert complexes. In addition, the motion of the cofactor is enhanced in the E·GMP·NADP complex. Last, the motions of the substrate and cofactor are coordinately regulated; the cofactor has faster local motions than GMP in the deamination complex but is more constrained than IMP in that complex, leading to hydride transfer. These results show that field cycling can be used to investigate the dynamics of protein-bound ligands and provide new insights into how portions of the substrate remote from the site of chemical transformation promote catalysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087720 | PMC |
http://dx.doi.org/10.1074/jbc.M116.739516 | DOI Listing |
Nanotechnology
January 2025
Xidian University, Room 120, G building, Southern campus of Xidian University, Xi'an, Shaanxi, 710126, CHINA.
The utilization of dual-working-electrode mode of interdigitated array (IDA) electrodes and other two-electrode systems has revolutionized electrochemical detection by enabling the simultaneous and independent detection of two species, accompanied by the exhibition of unique characteristics. In contrast to conventional dual-potential electrodes, such as the rotating ring disk electrodes (RRDE), IDA electrodes demonstrate analogous yet vastly improved performance, characterized by remarkable collection efficiency and sensitivity. Notably, due to the distinctive microscale structure of IDA electrode, the special "feedback" effect makes IDA a unique signal amplifier.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Tecnológico Nacional de México Campus Tuxtla, Carretera Panamericana Km 1080, Tuxtla Gutiérrez C.P. 29050, Mexico.
This study provides a comprehensive structural, chemical, and optical characterization of CZTS thin films deposited on flexible Kapton substrates via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The investigation explored the effects of varying deposition cycles (40, 60, 70, and 80) and annealing treatments on the films. An X-ray diffraction (XRD) analysis demonstrated enhanced crystallinity and phase purity, particularly in films deposited with 70 cycles.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Nagano, Japan.
Nitrogen-based fertilizers are crucial in agriculture for maintaining soil health and increasing crop yields. Soil microorganisms transform nitrogen from fertilizers into NO3--N, which is absorbed by crops. However, some nitrogen is converted to nitrous oxide (NO), a greenhouse gas with a warming potential about 300-times greater than carbon dioxide (CO).
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
In this study, a novel rapid immunochromatographic (IC) test for African swine fever virus (ASFV) antibodies is presented. An immunochromatographic test (IC) is a detection technique that combines membrane chromatography with immunolabeling. This approach saves time for antibody preparation, resulting in a shorter production cycle.
View Article and Find Full Text PDFGels
January 2025
Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
Researchers have been investigating the physical and morphological properties of biodegradable polymer and copolymer films, blending them with other chemicals to solve challenges in medical, industrial, and eco-environmental fields. The present study introduces a novel, straightforward method for preparing biodegradable hydrogels based on polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) for medical applications. The resulting PVA/PVP-based hydrogel uniquely combines the water absorbency, biocompatibility, and biodegradability of the polymer composite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!