Microbleeds on MRI are associated with microinfarcts on autopsy in cerebral amyloid angiopathy.

Neurology

From the Hemorrhagic Stroke Research Program (A.L., S.J.v.V., A.C., D.R., A.V., A.A., S.M.-R., E.M.G., S.M.G., A.V.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Department of Neurology (S.J.v.V., G.J.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Pathology (C.M.W.), New York University Langone Medical Center, New York University School of Medicine; Department of Medicine (D.R.), Faculty of Medicine, Naresuan University, Phitsanulok, Thailand; and C.S. Kubik Laboratory for Neuropathology (M.F.), Massachusetts General Hospital, Harvard Medical School, Boston.

Published: October 2016

Objectives: To identify in vivo MRI markers that might correlate with cerebral microinfarcts (CMIs) on autopsy in patients with cerebral amyloid angiopathy (CAA).

Methods: We included patients with neuropathologic evidence of CAA on autopsy and available antemortem brain MRI. Clinical characteristics and in vivo MRI markers of CAA-related small vessel disease were recorded, including white matter hyperintensities, cerebral microbleeds, cortical superficial siderosis, and centrum semiovale perivascular spaces. In addition, the presence of intracerebral hemorrhage on MRI was assessed. Evaluation of the presence and number of CMIs was performed in 9 standard histology sections.

Results: Of 49 analyzed patients with CAA, CMIs were present in 36.7%. The presence of ≥1 CMIs on autopsy was associated with higher numbers of microbleeds on antemortem MRI (median 8 [interquartile range 2.5-33.0] vs 1 [interquartile range 0-3], p = 0.003) and with the presence of intracerebral hemorrhage (44.4% vs 16.1%, p = 0.03). No associations between CMIs and other in vivo MRI markers of CAA were found. In a multivariable model adjusted for severe CAA pathology, higher numbers of microbleeds were independent predictors of the presence of CMIs on pathology.

Conclusions: CMIs are a common finding at autopsy in patients with CAA. The strong association between MRI-observed microbleeds and CMIs at autopsy may suggest a shared underlying pathophysiologic mechanism between these lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075970PMC
http://dx.doi.org/10.1212/WNL.0000000000003184DOI Listing

Publication Analysis

Top Keywords

vivo mri
12
mri markers
12
cmis autopsy
12
cerebral amyloid
8
amyloid angiopathy
8
cmis
8
autopsy patients
8
presence intracerebral
8
intracerebral hemorrhage
8
patients caa
8

Similar Publications

Magnetic chromatography was exploited to fractionate suspensions of magnetoliposomes (SML: lumen-free lipid-encapsulated clusters of multiple magnetic iron-oxide nanoparticles) improving their colloidal properties and relaxivity (magnetic resonance image contrast capability). Fractionation (i) removed sub-populations that do not contribute to the MRI response, and thus (ii) enabled evaluation of the size-dependence of relaxivity for the MRI-active part, which was surprisingly weak in the 55-90 nm range. MC was therefore implemented for processing multiple PEGylated SML types having average sizes ranging from 85 to 105 nm, which were then shown to have strongly size-dependent uptake in an pancreatic cancer model.

View Article and Find Full Text PDF

Excitation-inhibition (E/I) imbalance is theorized as a key mechanism in the pathophysiology of epilepsy, with ample research focusing on elucidating its cellular manifestations. However, few studies investigate E/I imbalance at the macroscale, whole-brain level, and its microcircuit-level mechanisms and clinical significance remain incompletely understood. Here, the Hurst exponent, an index of the E/I ratio, is computed from resting-state fMRI time series, and microcircuit parameters are simulated using biophysical models.

View Article and Find Full Text PDF

A Subtype Specific Probe for Targeted Magnetic Resonance Imaging of M2 Tumor-Associated Macrophages in Brain Tumors.

Acta Biomater

January 2025

Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America. Electronic address:

Pro-tumoral M2 tumor-associated macrophages (TAMs) play a critical role in the tumor immune microenvironment (TIME), making them an important therapeutic target for cancer treatment. Approaches for imaging and monitoring M2 TAMs, as well as tracking their changes in response to tumor progression or treatment are highly sought-after but remain underdeveloped. Here, we report an M2-targeted magnetic resonance imaging (MRI) probe based on sub-5 nm ultrafine iron oxide nanoparticles (uIONP), featuring an anti-biofouling coating to prevent non-specific macrophage uptake and an M2-specific peptide ligand (M2pep) for active targeting of M2 TAMs.

View Article and Find Full Text PDF

Radiopaque hydrogel-in-liposomes towards theranostic applications for malignant tumors.

Biomed Pharmacother

January 2025

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

A radiopaque hydrogel-in-liposome (RHL) system was developed for micro-computed tomography (μCT) imaging of tumor tissue and simultaneous delivery of a cytotoxic agent. Iopamidol (IPD) and doxorubicin (DOX) were incorporated as the CT contrast and anti-cancer agents, respectively. The presence of a polyethylene glycol hydrogel core in the liposomes was confirmed via attenuated total reflectance Fourier transform infrared, proton nuclear magnetic resonance, and selective solvent extraction.

View Article and Find Full Text PDF

Injectable DAT-ALG Hydrogel Mitigates Senescence of Loaded DPMSCs and Boosts Healing of Perianal Fistulas in Crohn's Disease.

ACS Biomater Sci Eng

January 2025

Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.

Perianal fistulas (PAFs) are a severe complication of Crohn's disease that significantly impact patient prognosis and quality of life. While stem-cell-based strategies have been widely applied for PAF treatment, their efficacy remains limited. Our study introduces an injectable, temperature-controlled decellularized adipose tissue-alginate hydrogel loaded with dental pulp mesenchymal stem cells (DPMSCs) for in vivo fistula treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!