Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongatus PCC 7942, under photosynthetic conditions.

J Biosci Bioeng

Laboratory for Bioinformatics, Graduate School of Systems Biosciences, Kyushu University, 804 Westwing, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. Electronic address:

Published: January 2017

Cyanobacteria engineered for production of biofuels and biochemicals from carbon dioxide represent a promising area of research in relation to a sustainable economy. Previously, we have succeeded in producing isopropanol from cellular acetyl-CoA by means of Synechococcus elongatus PCC 7942 into which a synthetic metabolic pathway was introduced. The isopropanol production by this synthetic metabolic pathway requires acetate; therefore, the cells grown under photosynthetic conditions have to be transferred to a dark and anaerobic conditions to produce acetate. In this study, we achieved acetate production under photosynthetic conditions by S. elongatus PCC 7942 into which we introduced the pta gene encoding phosphate acetyltransferase from Escherichia coli. The metabolic modification (via pta introduction) of the isopropanol-producing strain enabled production of isopropanol under photosynthetic conditions. During 14 days of production, the titer of isopropanol reached 0.55 mM (33.1 mg/l) with an intermediate product, acetone, at 0.21 mM (12.2 mg/l).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2016.07.005DOI Listing

Publication Analysis

Top Keywords

photosynthetic conditions
16
pcc 7942
12
isopropanol production
8
synechococcus elongatus
8
elongatus pcc
8
synthetic metabolic
8
metabolic pathway
8
production
6
isopropanol
5
metabolic
4

Similar Publications

Introduction: is a medicinal plant that produces silymarin, which has been demonstrated to possess antiviral, anti-neurodegenerative, and anticancer activities. Silybin (A+B) are two major hepatoprotective flavonolignans produced predominantly in fruits. Several attempts have been made to increase the synthesis of silymarin, or its primary components, silybin (A+B).

View Article and Find Full Text PDF

Strain LCG007, isolated from Lu Chao Harbor's intertidal water, phylogenetically represents a novel genus within the family Rhodobacteraceae. Metabolically, it possesses a wide array of amino acid metabolic genes that enable it to thrive on both amino acids or peptides. Also, it could hydrolyze peptides containing D-amino acids, highlighting its potential role in the cycling of refractory organic matter.

View Article and Find Full Text PDF

This study investigates the synergistic effects of zinc oxide nanoparticles (ZnO NPs) and melatonin (MT) on Fragaria × ananassa (strawberry) plants under drought stress, focusing on growth, fruit biomass, and stress tolerance. ZnO NPs enhance nutrient uptake and stress resistance, while MT regulates growth hormones and boosts photosynthetic efficiency. Seven treatments were evaluated: T1 (no stress, 0.

View Article and Find Full Text PDF

Background: Estimating the CO response of forest trees is of great significance in plant photosynthesis research. CO response measurement is traditionally employed under steady state conditions. With the development of open-path gas exchange systems, the Dynamic Assimilation Technique (DAT), allows measurement under non-steady state conditions.

View Article and Find Full Text PDF

Giant viruses (GVs; ) impact the biology and ecology of a wide range of eukaryotic hosts, with implications for global biogeochemical cycles. Here, we investigated GV niche separation in highly stratified Lake A at the northern coast of Ellesmere Island, Nunavut, Canada. This lake is composed of a layer of ice-covered freshwater that overlies saltwater derived from the ancient Arctic Ocean, and it therefore provides a broad gradient of environmental conditions and ecological habitats, each with a distinct protist community and rich assemblages of associated GVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!