AI Article Synopsis

  • The study evaluates how different rat strains (Hsd:SD, Crl:SD, Crl:LE) respond to carcinogen exposure in relation to mammary gland (MG) development.
  • It finds that Hsd:SD rats, despite lower body weight and later vaginal opening, develop mammary glands faster than the other strains.
  • The researchers suggest that when conducting mammary tumor studies, the timing of carcinogen administration should be tailored to the specific strain to target peak mammary gland development effectively.

Article Abstract

The potential of chemicals to alter susceptibility to mammary tumor formation is often assessed using a carcinogen-induced study design in various rat strains. The rate of mammary gland (MG) development must be considered so that the timing of carcinogen administration is impactful. In this study, in situ MG development was assessed in females of the Harlan Sprague-Dawley (Hsd:SD), Charles River Sprague-Dawley (Crl:SD), and Charles River Long-Evans (Crl:LE) rat strains at postnatal days 25, 33, and 45. Development was evaluated by physical assessment of growth parameters, developmental scoring, and quantitative morphometric analysis. Although body weight (BW) was consistently lower and day of vaginal opening (VO) occurred latest in female Hsd:SD rats, they exhibited accelerated pre- and peripubertal MG development compared to other strains. Glands of Crl:SD and Crl:LE rats exhibited significantly more terminal end buds (TEBs) and TEB/mm than Hsd:SD rats around the time of VO. These data suggest a considerable difference in the rate of MG development across commonly used strains, which is independent of BW and timing of VO. In mammary tumor induction studies employing these strains, administration of the carcinogen should be timed appropriately, based on strain, to specifically target the peak of TEB occurrence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5035587PMC
http://dx.doi.org/10.1177/0192623316655222DOI Listing

Publication Analysis

Top Keywords

mammary gland
8
gland development
8
timing carcinogen
8
mammary tumor
8
rat strains
8
charles river
8
hsdsd rats
8
rats exhibited
8
development
6
strains
6

Similar Publications

Hypercalcaemia in association with Sertoli cell tumour in a dog.

J Small Anim Pract

January 2025

Department of Veterinary Medicine and Surgery, University of Missouri, College of Veterinary Medicine, Columbia, Missouri, USA.

A 9-year-old, presumed male castrated mixed breed dog was evaluated for lethargy, hyporexia, polyuria, polydipsia and diffuse gynaecomastia. Bloodwork revealed severe hypercalcaemia and hyposthenuria. CT scan showed a caudal abdominal mass consistent with a Sertoli cell tumour on cytology.

View Article and Find Full Text PDF

NOTCH and IGF1 signaling systems are involved in the effects exerted by anthelminthic treatment of heifers on the bovine mammary gland.

Vet Parasitol

January 2025

Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires 6000, Argentina; Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA, UNNOBA - UNSAdA - CONICET, Monteagudo 2772, Pergamino, Buenos Aires 2700, Argentina. Electronic address:

Dairy heifers with gastrointestinal nematodes have reduced growth rates, and delayed age at puberty and milk production onset related to late mammary gland development. IGF1 and Notch signaling systems are important in this process, and an altered profile of serum IGF1 has been associated with the detrimental effect of the nematodes on parenchymal development. In this context, we aimed to study the molecular mechanisms involved in bovine mammary gland development around pre and postpuberty, focusing on proliferative and angiogenic processes that involve the Notch and IGF1 pathways.

View Article and Find Full Text PDF

Deciphering the colostral-immunity transfer: from mammary gland to neonates small intestine.

Vet Res Commun

January 2025

Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.

Colostrum, the initial mammary secretion produced by various mammals following birth, is a conduit for maternal immunity transfer in diverse mammalian species. Concurrently, many cellular processes are occurring in the neonatal small intestine to prepare it to receive molecular signals from a superfood essential for the neonate's health and development. During the prepartum colostrum secretion, the newborn intestine undergoes transient alterations in the intestinal barrier, primarily regulating immunoglobulin absorption.

View Article and Find Full Text PDF

Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk, vary significantly among women due to factors such as secretor status, race, geography, season, maternal nutrition and weight, gestational age, and delivery method. In recent studies, HMOs have been shown to have a variety of functional roles in the development of infants. Because HMOs are not digested by infants, they act as metabolic substrates for certain bacteria, helping to establish the infant's gut microbiota.

View Article and Find Full Text PDF

Identification and Analysis of Circular RNAs in Mammary Gland from Yaks Between Lactation and Dry Period.

Animals (Basel)

January 2025

Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.

Lactation is a complex physiological process regulated by numerous genes and factors. Circular RNA (circRNA), a non-coding RNA, acts as a molecular sponge that sequesters microRNAs (miRNAs) to regulate target gene expression. Although circRNA has been linked to mammary gland lactation, its specific role in yaks remains underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!