Purpose: To examine the association between Vitamin D receptor (VDR) gene polymorphisms and lumbar disc degeneration (LDD) predisposition.
Methods: A comprehensive literature search was conducted to identify all the relevant studies. The allele/genotype frequencies were extracted from each study. We calculated the pooled odds ratios (ORs) and 95 % confidence intervals (CI) to assess the strength of the association between the VDR gene polymorphisms and LDD risk. Statistical analysis was performed using RevMan 5.31 software.
Results: A total of 23 case-control studies (1835 cases and 1923 controls) were included in this systematic review. For the TaqI (rs731236), FokI (rs2228570) and ApaI (rs7975232) polymorphisms of VDR gene, nine studies, seven studies, and five studies, were eventually included in the meta-analysis, respectively. There was no evidence that the VDR gene polymorphisms (TaqI, FokI, ApaI) had significant associations with LDD risk.(for TaqI allelic comparison, OR = 1.07, 95 % CI 0.81-1.40, p = 0.64; for FokI allelic comparison, OR = 1.23, 95 % CI 0.83-1.82, p = 0.31; for ApaI allelic comparison, OR = 0.79, 95 % CI 0.55-1.14, p = 0.20). For stratified analyses by ethnicity and study design, no significant associations were found in Caucasian population and Asian population, as well as the population-based studies and hospital-based studies under all genetic models.
Conclusions: TaqI, FokI, and ApaI polymorphisms of VDR gene were not significantly associated with the predisposition of LDD. Large-scale and well-designed international studies are needed to further analyze this field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00586-016-4771-2 | DOI Listing |
Burns Trauma
January 2025
Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
Background: Keloids are disfiguring, fibrotic scar-like lesions that are challenging to treat and commonly recur after therapy. A deeper understanding of the mechanisms driving keloid formation is necessary for the development of more effective therapies. Reduced vitamin D receptor (VDR) expression has been observed in keloids, implicating vitamin D signaling in keloid pathology.
View Article and Find Full Text PDFScand J Immunol
January 2025
LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
The effects of vitamin D and vitamin A in immune cells are mediated through the vitamin D receptor (VDR) and retinoic acid receptor (RAR), respectively. These receptors share the retinoid X receptor (RXR) co-factor for transcriptional regulation. We investigated the effects of active vitamin D (1,25(OH)D) and 9-cis retinoic acid (9cRA) on T helper (T)1 and T2 cytokines and transcription factors in primary human blood-derived CD4 T cells.
View Article and Find Full Text PDFGinekol Pol
January 2025
Department of Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Poland, Poland.
Objectives: Hyperandrogenism is a frequently recognized endocrine imbalance in which there is excessive production of androgens. The purpose of the study was to investigate the impact of vitamin D receptor (VDR) gene polymorphisms on chosen bone metabolism and biochemical parameters in women with hyperandrogenism.
Material And Methods: Eighty young females with hyperandrogenism were enrolled in the study, in whom selected parameters of bone turnover, endocrine and metabolic parameters were determined.
Heliyon
January 2025
ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, Punjab, 141 004, India.
Viral diseases severely impact maize yields, with occurrences of maize viruses reported worldwide. Deployment of genetic resistance in a plant breeding program is a sustainable solution to minimize yield loss to viral diseases. The meta-QTL (MQTL) has demonstrated to be a promising approach to pinpoint the most robust QTL(s)/candidate gene(s) in the form of an overlapping or common genomic region identified through leveraging on different research studies that independently report genomic regions significantly associated with the target traits.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan.
Recently, we demonstrated that the alopecia observed in vitamin D receptor gene-deficient (-KO) rats is not seen in rats with a mutant VDR(R270L/H301Q), which lacks ligand-binding ability, suggesting that the ligand-independent action of VDR plays a crucial role in maintaining the hair cycle. Since -KO rats also showed abnormalities in the skin, the relationship between alopecia and skin abnormalities was examined. To clarify the mechanism of actions of vitamin D and VDR in the skin, protein composition, and gene expression patterns in the skin were compared among -KO, -R270L/H301Q, and wild-type (WT) rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!