Extracellular cell matrices deposited by cells stimulate cell proliferation. However, their generation is cumbersome and time consuming. We show here that controlled fixation of fibronectin layers after coating culture vessels significantly enhances expansion of murine and human mesenchymal stem cells (MSCs) and, to a lesser extent, primary fibroblasts. In contrast, fibronection fixation did not stimulate proliferation of established cancer cell lines. Fixed vitronectin or collagen IV layers also enhanced proliferation of murine MSCs. Thus, controlled formaldehyde fixation of layers formed by fibronectin or some other extracellular matrix components represents a simple and reproducible way to enhance proliferation of primary cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2016.09.003 | DOI Listing |
J Hazard Mater
January 2025
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China. Electronic address:
Catalytic oxidation of formaldehyde (HCHO) is a highly effective method for indoor HCHO removal. However, many aspects of the catalytic mechanism remain unclear, making the optimization of catalysts largely empirical. Herein, we report a coupled experimental and computational study of Pt/TiO catalysts, with special focus on the functional roles of surface oxygen vacancies and hydroxyl groups in the catalytic oxidation of HCHO.
View Article and Find Full Text PDFArch Toxicol
January 2025
National Research Centre for the Working Environment, Copenhagen, Denmark.
Formaldehyde (FA) is a ubiquitous indoor air pollutant emitted from construction, consumer, and combustion-related products, and ozone-initiated reactions with reactive organic volatiles. The derivation of an indoor air quality guideline for FA by World Health Organization in 2010 did not find convincing evidence for bronchoconstriction-related reactions as detrimental lung function. Causal relationship between FA and asthma has since been advocated in meta-analyses of selected observational studies.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Molecular Genetics and Genomics, New England Biolabs, Inc, 240 County Road, Ipswich, MA 01938, USA.
Gene expression is regulated by chromatin DNA methylation and other features, including histone post-translational modifications (PTMs), chromatin remodelers and transcription factor occupancy. A complete understanding of gene regulation will require the mapping of these chromatin features in small cell number samples. Here we describe a novel genome-wide chromatin profiling technology, named as Nicking Enzyme Epitope targeted DNA sequencing (NEED-seq).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Switchable selectivity achieved by altering reaction conditions within the same photocatalytic system offers great advantages for sustainable chemical transformations and renewable energy conversion. In this study, we investigate an efficient photocatalytic methanol dehydrogenation with controlled selectivity by varying the concentration of nickel cocatalyst, using zinc indium sulfide nanocrystals as a semiconductor photocatalyst, which enables the production of either formaldehyde or ethylene glycol with high selectivity. Control experiments revealed that formaldehyde is initially generated and can either serve as a terminal product or intermediate in producing ethylene glycol, depending on the nickel concentration in the solution.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Photochemistry-based silica formation offers a pathway toward energy-efficient and controlled fabrication processes. While the transformation of poly(dimethylsiloxane) (PDMS) to silica (often referred to as SiO due to incomplete conversion) under deep ultraviolet (DUV) irradiation in the presence of oxygen/ozone has experimentally been validated, the detailed mechanism remains elusive. This study demonstrates the underlying molecular-level mechanism of PDMS-to-silica conversion using density functional theory (DFT) calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!