A bromate (BrO)-reducing bacterium, designated Rhodococcus sp. strain Br-6, was isolated from soil. The strain reduced 250 μM bromate completely within 4 days under growth conditions transitioning from aerobic to anaerobic conditions, while no reduction was observed under aerobic and anaerobic growth conditions. Bromate was reduced to bromide (Br) stoichiometrically, and acetate was required as an electron donor. Interestingly, bromate reduction by strain Br-6 was significantly dependent on both ferric iron and a redox dye 2,6-dichloroindophenol (DCIP). Cell free extract of strain Br-6 showed a dicumarol-sensitive diaphorase activity, which catalyzes the reduction of DCIP in the presence of NADH. Following abiotic experiments showed that the reduced form of DCIP was reoxidized by ferric iron, and that the resulting ferrous iron reduced bromate abiotically. Furthermore, activity staining of the cell free extract revealed that one of diaphorase isoforms possessed a bromate-reducing activity. Our results demonstrate that strain Br-6 utilizes multiple redox mediators, that is, DCIP and ferric iron, for bromate reduction. Since the apparent rate of bromate reduction by this strain (60 μM day) was 3 orders of magnitude higher than that of known bromate-reducing bacteria, it could be applicable to removal of this probable human carcinogen from drinking water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.6b02261 | DOI Listing |
Mikrochim Acta
December 2024
College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China.
A nanocomposite consisting of gold nanoparticles (AuNPs), poly(diallyldimethylammonium chloride) (PDDA), and reduced graphene oxide (rGO) was fabricated by a two-step chemical reduction method. Firstly, a PDDA-rGO composite was prepared by using hydrazine hydrate as a reducing agent. Subsequently, the AuNP-PDDA-rGO composite was prepared in ethylene glycol with PDDA-rGO and HAuCl as raw materials using sodium citrate as a reduction agent.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.
8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China. Electronic address:
Bromate (BrO) is a common by-product of advanced oxidation water treatment processes. In this study, a catalyst combining MXene and Pd was synthesized to eliminate BrO by electrochemical reduction in flow-through mode. The fabricated Ti/Pd@MXene filter showed superior activity for BrO reduction compared with Ti/MXene filter.
View Article and Find Full Text PDFChemosphere
November 2024
Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea; Department of Polar Science, University of Science of Technology (UST), Incheon, 21990, Republic of Korea. Electronic address:
The purification of bromate (BrO)-contaminated water has become a challenge because of its persistence and adverse effects. Furthermore, there has been concern over the release of byproducts, such as diphenyl phosphate (DPHP), from flame retardants in wastewater treatment plant (WWTP). In this study, we designed the water treatment system for the oxidation of DPHP accompanied by bromate (BrO) reduction via freezing the solution.
View Article and Find Full Text PDFEnviron Sci Technol
October 2024
Department of Civil Engineering, The University of Hong Kong, Hong Kong, SAR 999077, China.
Advanced reduction processes (ARPs) are promising for pollutant removal in drinking water treatment. In this study, we demonstrated highly efficient reduction of bromate, a harmful disinfection byproduct, by coupling ARPs with an iron nanoparticles-intercalated graphene oxide (GO@FeNPs) catalytic membrane. In the presence of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!