Ultrasound is a valuable biomedical imaging modality and diagnostic tool. Here we theoretically demonstrate that a single dipole plasmonic nanoantenna can be used as an optical hydrophone for MHz-range ultrasound. The nanoantenna is tuned to operate on a high-order plasmon mode, which provides an increased sensitivity to ultrasound in contrast to the usual approach of using the fundamental dipolar plasmon resonance. Plasmonic nanoantenna hydrophones may be useful for ultrasonic imaging of biological cells, cancer tissues or small blood vessels, as well as for Brillouin spectroscopy at the nanoscale.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017197 | PMC |
http://dx.doi.org/10.1038/srep32892 | DOI Listing |
Nano Lett
January 2025
Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.
Nanostructured high-index dielectrics have shown great promise as low-loss photonic platforms for wavefront control and enhancing optical nonlinearities. However, their potential as optomechanical resonators has remained unexplored. In this work, we investigate the generation and detection of coherent acoustic phonons in individual crystalline gallium phosphide nanodisks on silica in a pump-probe configuration.
View Article and Find Full Text PDFNanophotonics
December 2024
Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia, Spain.
In the realm of nanotechnology, the integration of quantum emitters with plasmonic nanostructures has emerged as an innovative pathway for applications in quantum technologies, sensing, and imaging. This research paper provides a comprehensive exploration of the photoluminescence enhancement induced by the interaction between quantum emitters and tailored nanostructure configurations. Four canonical nanoantennas (spheres, rods, disks, and crescents) are systematically investigated theoretically in three distinct configurations (single, gap, and nanoparticle-on-mirror nanoantennas), as a representative selection of the most fundamental and commonly studied structures and arrangements.
View Article and Find Full Text PDFNanophotonics
September 2024
Friedrich Schiller University Jena, Faculty of Physics and Astronomy, Abbe Center of Photonics, Institute of Applied Physics, Albert-Einstein-Str. 15, 07745 Jena, Germany.
In the rapidly evolving field of plasmonic metasurfaces, achieving homogeneous, reliable, and reproducible fabrication of sub-5 nm dielectric nanogaps is a significant challenge. This article presents an advanced fabrication technology that addresses this issue, capable of realizing uniform and reliable vertical nanogap metasurfaces on a whole wafer of 100 mm diameter. By leveraging fast patterning techniques, such as variable-shaped and character projection electron beam lithography (EBL), along with atomic layer deposition (ALD) for defining a few nanometer gaps with sub-nanometer precision, we have developed a flexible nanofabrication technology to achieve gaps as narrow as 2 nm in plasmonic nanoantennas.
View Article and Find Full Text PDFNanophotonics
September 2024
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA.
Plasmonic nanoantennas with suitable far-field characteristics are of huge interest for utilization in optical wireless links, inter-/intrachip communications, LiDARs, and photonic integrated circuits due to their exceptional modal confinement. Despite its success in shaping robust antenna design theories in radio frequency and millimeter-wave regimes, conventional transmission line theory finds its validity diminished in the optical frequencies, leading to a noticeable void in a generalized theory for antenna design in the optical domain. By utilizing neural networks, and through a one-time training of the network, one can transform the plasmonic nanoantennas design into an automated, data-driven task.
View Article and Find Full Text PDFNanophotonics
August 2024
Light, Nanomaterials, Nanotechnologies, Université de Technologie de Troyes, Troyes, France.
We study numerically and experimentally the second-harmonic generation (SHG) from rectangular metagratings of V-shaped gold nanoantennas. We show that by carefully engineering the array pitch to steer the diffraction orders toward the single antenna emission, the extracted signal is maximized. This enhancement is attributed to the angular overlap between the radiation pattern and array factor and is comparable to the improvement yielded by the coupling of surface lattice resonances (SLRs) with local modes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!