Activating mutation of BRAF is a common finding in pediatric gliomas. As many as 14% of high grade and up to 66% of certain subtypes of low grade pediatric glioma have the BRAFV600E mutation. Small molecule inhibitors that selectively target BRAFV600E are FDA approved for melanoma and have shown significant efficacy in treating BRAFV600E glioma in pre-clinical trials. Despite showing initial anti-tumor activity, acquired drug resistance significantly limits the benefit from being treated with BRAFV600E inhibitors. Here, we have identified molecular responses to BRAFV600E inhibitor treatment in human glioma models that have substantial clinical implications. Specifically, we show that BRAFV600E inhibitor resistant cells upregulate pro-survival mediators such as Wnt, and additionally increase receptor tyrosine kinase activity, including EGFR and Axl, promoting resistance to BRAFV600E inhibition. Our results suggest strategies to circumvent acquired resistance to BRAFV600E inhibitor therapy, and thereby improve outcomes for patients with BRAFV600E gliomas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5352180PMC
http://dx.doi.org/10.18632/oncotarget.11882DOI Listing

Publication Analysis

Top Keywords

brafv600e inhibitor
12
brafv600e
10
acquired resistance
8
resistance brafv600e
8
resistance braf
4
braf inhibition
4
inhibition brafv600e
4
brafv600e mutant
4
mutant gliomas
4
gliomas activating
4

Similar Publications

The treatment landscape for advanced melanoma has transformed significantly with the advent of BRAF and MEK inhibitors (BRAF/MEKi) targeting V600 mutations, as well as immune checkpoint inhibitors (ICI) like anti-PD-1 monotherapy or its combinations with anti-CTLA-4 or anti-LAG-3. Despite that, many patients still do not benefit from these treatments at all or develop resistance mechanisms. Therefore, prognostic and predictive biomarkers are needed to identify patients who should switch or escalate their treatment strategies or initiate an intensive follow-up.

View Article and Find Full Text PDF

BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells.

View Article and Find Full Text PDF

BRAF inhibitor monotherapy in BRAFV600E-mutated pediatric low-grade glioma: a single center's experience.

Front Oncol

January 2025

Department of Pediatrics, Children's Healthcare of Atlanta, Atlanta, GA, United States.

Background: Pediatric low-grade gliomas (pLGGs) have an overall survival of over 90%; however, patients harboring a BRAF alteration may have worse outcomes, particularly when treated with classic chemotherapy. Combined BRAF/MEK inhibition following incomplete resection demonstrated improved outcome in BRAF altered pLGG compared to combined carboplatin/vincristine chemotherapy and is now considered the standard FDA-approved treatment for this group of tumors. The aim herein was to investigate the efficacy and tolerability of single agent BRAF inhibitor treatment in BRAF altered pLGG.

View Article and Find Full Text PDF

Background: The combination therapy of the B-Raf proto-oncogene (BRAF) inhibitor dabrafenib and the mitogen-activated protein kinase kinase (MEK) inhibitor Trametinib has shown favorable outcomes in patients initially identified with BRAF mutations. However, there are currently no large-scale study data focusing on the use of a triple therapy regimen of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) plus dabrafenib and trametinib in patients with newly concomitant BRAF mutations after acquiring resistance to EGFR-TKIs. Our study aimed to explore the efficacy and safety of the triple therapy regimen through a multi-center real-world experience.

View Article and Find Full Text PDF

Protocatechuic aldehyde sensitizes BRAF-mutant melanoma cells to temozolomide through inducing FANCD2 degradation.

Med Oncol

January 2025

Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.

Temozolomide (TMZ)-based chemotherapy is a primary regimen for melanoma patients who have failed targeted therapy or immunotherapy. However, the low response rate of TMZ-based chemotherapy challenges the patients' prognosis. BRAF mutation is the most frequently mutated site in melanoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!