Activating mutation of BRAF is a common finding in pediatric gliomas. As many as 14% of high grade and up to 66% of certain subtypes of low grade pediatric glioma have the BRAFV600E mutation. Small molecule inhibitors that selectively target BRAFV600E are FDA approved for melanoma and have shown significant efficacy in treating BRAFV600E glioma in pre-clinical trials. Despite showing initial anti-tumor activity, acquired drug resistance significantly limits the benefit from being treated with BRAFV600E inhibitors. Here, we have identified molecular responses to BRAFV600E inhibitor treatment in human glioma models that have substantial clinical implications. Specifically, we show that BRAFV600E inhibitor resistant cells upregulate pro-survival mediators such as Wnt, and additionally increase receptor tyrosine kinase activity, including EGFR and Axl, promoting resistance to BRAFV600E inhibition. Our results suggest strategies to circumvent acquired resistance to BRAFV600E inhibitor therapy, and thereby improve outcomes for patients with BRAFV600E gliomas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5352180 | PMC |
http://dx.doi.org/10.18632/oncotarget.11882 | DOI Listing |
Int J Mol Sci
January 2025
August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain.
The treatment landscape for advanced melanoma has transformed significantly with the advent of BRAF and MEK inhibitors (BRAF/MEKi) targeting V600 mutations, as well as immune checkpoint inhibitors (ICI) like anti-PD-1 monotherapy or its combinations with anti-CTLA-4 or anti-LAG-3. Despite that, many patients still do not benefit from these treatments at all or develop resistance mechanisms. Therefore, prognostic and predictive biomarkers are needed to identify patients who should switch or escalate their treatment strategies or initiate an intensive follow-up.
View Article and Find Full Text PDFJ Exp Med
March 2025
Institute of Cancer Research, Shenzhen Bay Laboratory , Shenzhen, China.
BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Pediatrics, Children's Healthcare of Atlanta, Atlanta, GA, United States.
Background: Pediatric low-grade gliomas (pLGGs) have an overall survival of over 90%; however, patients harboring a BRAF alteration may have worse outcomes, particularly when treated with classic chemotherapy. Combined BRAF/MEK inhibition following incomplete resection demonstrated improved outcome in BRAF altered pLGG compared to combined carboplatin/vincristine chemotherapy and is now considered the standard FDA-approved treatment for this group of tumors. The aim herein was to investigate the efficacy and tolerability of single agent BRAF inhibitor treatment in BRAF altered pLGG.
View Article and Find Full Text PDFTransl Lung Cancer Res
December 2024
Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
Background: The combination therapy of the B-Raf proto-oncogene (BRAF) inhibitor dabrafenib and the mitogen-activated protein kinase kinase (MEK) inhibitor Trametinib has shown favorable outcomes in patients initially identified with BRAF mutations. However, there are currently no large-scale study data focusing on the use of a triple therapy regimen of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) plus dabrafenib and trametinib in patients with newly concomitant BRAF mutations after acquiring resistance to EGFR-TKIs. Our study aimed to explore the efficacy and safety of the triple therapy regimen through a multi-center real-world experience.
View Article and Find Full Text PDFMed Oncol
January 2025
Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.
Temozolomide (TMZ)-based chemotherapy is a primary regimen for melanoma patients who have failed targeted therapy or immunotherapy. However, the low response rate of TMZ-based chemotherapy challenges the patients' prognosis. BRAF mutation is the most frequently mutated site in melanoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!