Analysis of Loops that Mediate Protein-Protein Interactions and Translation into Submicromolar Inhibitors.

J Am Chem Soc

Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States.

Published: October 2016

Effective strategies for mimicking α-helix and β-strand epitopes have been developed, producing valuable inhibitors for some classes of protein-protein interactions (PPIs). However, there are no general strategies for translating loop epitopes into useful PPI inhibitors. In this work, we use the LoopFinder program to identify diverse sets of "hot loops," which are loop epitopes that mediate PPIs. These include loops that are well-suited to mimicry with macrocyclic compounds, and loops that are most similar to variable loops on antibodies and ankyrin repeat proteins. We present data-driven criteria for scoring loop-mediated PPIs, uncovering a trove of potentially druggable interactions. We also use unbiased clustering to identify common structures among the hot loops. To translate these insights into real-world inhibitors, we describe a robust, diversity-oriented strategy for the rapid production and evaluation of cyclized loops. This method is applied to a computationally identified loop in the PPI between stonin2 and Eps15, producing submicromolar inhibitors. The most potent inhibitor is well-structured in water and successfully mimics the native epitope. Overall, these computational and experimental strategies provide new opportunities to design inhibitors for an otherwise intractable set of PPIs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b05656DOI Listing

Publication Analysis

Top Keywords

protein-protein interactions
8
submicromolar inhibitors
8
loop epitopes
8
inhibitors
6
loops
5
analysis loops
4
loops mediate
4
mediate protein-protein
4
interactions translation
4
translation submicromolar
4

Similar Publications

Genome-wide association studies are enriched for interacting genes.

BioData Min

January 2025

The Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90069, USA.

Background: With recent advances in single cell technology, high-throughput methods provide unique insight into disease mechanisms and more importantly, cell type origin. Here, we used multi-omics data to understand how genetic variants from genome-wide association studies influence development of disease. We show in principle how to use genetic algorithms with normal, matching pairs of single-nucleus RNA- and ATAC-seq, genome annotations, and protein-protein interaction data to describe the genes and cell types collectively and their contribution to increased risk.

View Article and Find Full Text PDF

Targeting protein-ligand neosurfaces with a generalizable deep learning tool.

Nature

January 2025

Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland.

Molecular recognition events between proteins drive biological processes in living systems. However, higher levels of mechanistic regulation have emerged, in which protein-protein interactions are conditioned to small molecules. Despite recent advances, computational tools for the design of new chemically induced protein interactions have remained a challenging task for the field.

View Article and Find Full Text PDF

TPPP3, a Good Prognostic Indicator, Suppresses Cell Proliferation and Migration in OSCC.

Int Dent J

January 2025

Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China. Electronic address:

Introduction And Aims: Oral squamous cell carcinoma (OSCC) is one of the most prevalent malignancy of the head and neck. Early diagnosis of OSCC is difficult and the prognosis has not improved significantly. This study aims to explore the role of tubulin polymerisation promoting protein 3 (TPPP3) in the occurrence and development of OSCC and discover new diagnostic and prognostic markers for OSCC.

View Article and Find Full Text PDF

Multi-source biological knowledge-guided hypergraph spatiotemporal subnetwork embedding for protein complex identification.

Brief Bioinform

November 2024

Information Science and Technology College, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, Liaoning, China.

Identifying biologically significant protein complexes from protein-protein interaction (PPI) networks and understanding their roles are essential for elucidating protein functions, life processes, and disease mechanisms. Current methods typically rely on static PPI networks and model PPI data as pairwise relationships, which presents several limitations. Firstly, static PPI networks do not adequately represent the scopes and temporal dynamics of protein interactions.

View Article and Find Full Text PDF

Identification and validation of Atp5f1c in CD4 T cell as a hub protein in Parkinson's disease.

Int J Biol Macromol

January 2025

Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China. Electronic address:

Parkinson's disease (PD) is an age-related and progressive neurodegenerative disease. Growing evidences indicate that CD4 T cell dysfunction plays an essential role in the progress of PD. Here, in LPS-induced PD mice, we isolated midbrain CD4 T cell and peripheral CD4 T cell to perform proteomics, and then screened a total of 167 co-expression proteins via integrated bioinformatics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!