Primary sludge from a Portuguese pulp and paper mill, containing 60% of carbohydrates, and unbleached pulp (as reference material), with 93% of carbohydrates, were used to produce ethanol by simultaneous saccharification and fermentation (SSF). SSF was performed in batch or fed-batch conditions without the need of a pretreatment. Cellic CTec2 was the cellulolytic enzymatic complex used and Saccharomyces cerevisiae (baker's yeast or ATCC 26602 strain) or the thermotolerant yeast Kluyveromyces marxianus NCYC 1426 were employed. Primary sludge was successfully converted to ethanol and the best results in SSF efficiency were obtained with S. cerevisiae. An ethanol concentration of 22.7 g L was produced using a content of 50 g L of carbohydrates from primary sludge, in batch conditions, with a global conversion yield of 81% and a production rate of 0.94 g L h. Fed-batch operation enabled higher solids content (total carbohydrate concentration of 200 g L, equivalent to a consistency of 33%) and a reduction of three-quarters of cellulolytic enzyme load, leading to an ethanol concentration of 40.7 g L, although with lower yield and productivity. Xylitol with a concentration up to 7 g L was also identified as by-product in the primary sludge bioconversion process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2016.1235230 | DOI Listing |
Water Res
December 2024
Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China. Electronic address:
Wastewater surveillance programs based at wastewater treatment plants (WWTPs) have been widely implemented, becoming a crucial measure for public health. Recently, the scope of monitoring has expanded from influent wastewater to include primary settled solids and activated sludge. The effectiveness of monitoring primary settled solids has been widely validated, but the suitability of activated sludge as a monitoring target remains unclear.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
The disposal of municipal solid waste (MSW) is a significant source of greenhouse gas (GHG) emissions. As incineration becomes the primary method of MSW disposal in China, MSW incineration (MSWI) plants are expected to play a crucial role in mitigating GHG emissions in the waste sector. This study estimated the quarterly GHG emissions from two representative MSWI plants in Qingdao using a life-cycle assessment (LCA) approach.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China.
To explore the changes in groundwater hydrochemistry and its source influence in the low water level period of the southern oasis area of Gaochang District, Turpan City before and after the management of groundwater overexploitation, based on 12 groups of water samples in 2016 (three groups of unconfined water, nine groups of confined water) and 18 groups of water samples in 2023 (five groups of unconfined water, thirteen groups of confined water), mathematical statistics, hydrochemical diagraph, hydrogen and oxygen isotope means, and an absolute principle component-multiple linear regression (APCS-MLR) model were used to analyze the changes and sources of groundwater hydrochemistry. The results showed that due to the dynamic conditions of groundwater, the dominant cation changed from Na to Ca, and the anion changed from HCO to SO. The dominant cation of confined water changed from Ca to Na, and the dominant anion remained unchanged as SO.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
Taking a sewage treatment plant in Suzhou City, Jiangsu Province, as an example, the greenhouse gas (GHG) emissions generated in the sewage treatment system were calculated using the carbon balance method and the emission factor method. The environmental impacts and economic aspects of different treatment units in wastewater treatment plants were analyzed using life cycle assessment, cost-benefit analysis, and data envelopment analysis models, and emission reduction pathways were proposed. The results indicated that the total GHG emissions (in terms of CO) from a certain municipal wastewater treatment plant in Suzhou were 6 653.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Botanical Garden, Institute of Nature and Environmental Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan.
Quaternary ammonium compounds (QACs), ecotoxic organic chemicals linked to multidrug resistance, are being used increasingly, for example to prevent the transmission of infections such as covid-19, in households, hospitals, and industry. To understand the locations, fluctuations, and fractions of QACs entering sewers, we monitored 14 QACs (benzalkonium chloride [BAC]-C8, C10, C12, C14, C16, and C18; dialkyldimethylammonium chloride [DDAC]-C8, C10, and C12; alkyltrimethylammonium chloride [ATAC]-C12, C16, and C18; benzethonium chloride; and cetylpyridinium chloride), and a disinfectant (chlorhexidine) in influent at four Japanese sewage treatment plants (STPs) five times throughout a year. Mass inflows were relatively stable throughout the year, indicating that the recent seasonal covid-19 epidemic did not greatly influence them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!