Olfactory dysfunction is a common clinical phenomenon observed in various liver diseases. Previous studies have shown a correlation between smell disorders and bilirubin levels in patients with hepatic diseases. Bilirubin is a well-known neurotoxin; however, its effect on neurons in the main olfactory bulb (MOB), the first relay in the olfactory system, has not been examined. We investigated the effect of bilirubin (>3 μM) on mitral cells (MCs), the principal output neurons of the MOB. Bilirubin increased the frequency of spontaneous firing and the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). TTX completely blocked sEPSCs in almost all of the cells tested. Bilirubin activity was partially blocked by N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepro pionic acid (AMPA) receptor antagonists. Furthermore, we found that bilirubin increased the frequency of intrinsic firing independent of synaptic transmission in MCs. Our findings suggest that bilirubin enhances glutamatergic transmission and strengthens intrinsic firing independent of synaptic transmission, all of which cause hyperexcitability in MCs. Our findings provide the basis for further investigation into the mechanisms underlying olfactory dysfunction that are often observed in patients with severe liver disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017196PMC
http://dx.doi.org/10.1038/srep32872DOI Listing

Publication Analysis

Top Keywords

bilirubin
8
mitral cells
8
olfactory bulb
8
olfactory dysfunction
8
bilirubin increased
8
increased frequency
8
intrinsic firing
8
firing independent
8
independent synaptic
8
synaptic transmission
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!