The β-delayed neutron emission of ^{83,84}Ga isotopes was studied using the neutron time-of-flight technique. The measured neutron energy spectra showed emission from states at excitation energies high above the neutron separation energy and previously not observed in the β decay of midmass nuclei. The large decay strength deduced from the observed intense neutron emission is a signature of Gamow-Teller transformation. This observation was interpreted as evidence for allowed β decay to ^{78}Ni core-excited states in ^{83,84}Ge favored by shell effects. We developed shell model calculations in the proton fpg_{9/2} and neutron extended fpg_{9/2}+d_{5/2} valence space using realistic interactions that were used to understand measured β-decay lifetimes. We conclude that enhanced, concentrated β-decay strength for neutron-unbound states may be common for very neutron-rich nuclei. This leads to intense β-delayed high-energy neutron and strong multineutron emission probabilities that in turn affect astrophysical nucleosynthesis models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.117.092502 | DOI Listing |
Appl Radiat Isot
December 2024
Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
Liquid scintillator consists of an organic solvent and one or more scintillation solutes, which can emit light pulses after absorbing X- and γ-rays, or high-energy particles. It has the characteristics of strong neutron/γ-ray (n/γ) discrimination, short decay time, unlimited size and low cost, which plays an important role in high-sensitivity and large-scale radiation detection, especially in the construction and safe operation of nuclear facilities. However, the impact of solvent selection and moisture content on the fluorescence-scintillation properties of scintillators has not been adequately investigated in the literature.
View Article and Find Full Text PDFJ Mater Chem A Mater
December 2024
Empa, Swiss Federal Laboratories for Materials Science and Technology Dübendorf 8600 Switzerland
Battery research often encounters the challenge of determining chemical information, such as composition and elemental oxidation states, of a layer buried within a cell stack in a non-destructive manner. Spectroscopic techniques based on X-ray emission or absorption are well-suited and commonly employed to reveal this information. However, the attenuation of X-rays as they travel through matter creates a challenge when trying to analyze layers buried at depths exceeding hundred micrometers from the sample's surface.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2024
Radiation Monitoring Devices, Inc., 44 Hunt St., Watertown, MA, USA 02472- 4624.
Development of new scintillator materials is a continuous effort, which recently has been focused on materials with higher stopping power. Higher stopping power can be achieved if the compositions include elements such as Tl (Z=81) or Lu (Z=71), as the compounds gain higher densities and effective atomic numbers. In context of medical imaging this translates into high detection efficiency (count rates), therefore, better image quality (statistics, thinner films) or lower irradiation doses to patients in addition to lowering of cost.
View Article and Find Full Text PDFSci Rep
November 2024
Delft University of Technology, Faculty of Applied Sciences, Delft, 2629JB-15, The Netherlands.
Neutron tomography is gaining popularity particularly in cultural heritage research, for non-destructively analysing the inner structure of bulk metal artefacts, such as bronzes, but the induced temporary decay radiation is often considered as a drawback. However, this delayed gamma-emission can be put to good use: by performing gamma spectroscopy after neutron tomography, the interior elemental composition of artefacts can be obtained "for free". Inspired by this, we propose a ray-tracing approach to non-invasively quantify both interior geometry and elemental composition using only a single neutron tomography experiment.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China.
Aqueous room-temperature phosphorescence (RTP) materials have garnered considerable attention for their significant potential across various applications such as bioimaging, sensing, and encryption. However, establishing a universally applicable method for achieving aqueous RTP remains a substantial challenge. Herein, we present a versatile supramolecular strategy to transition RTP from solid states to aqueous phases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!