Human Skeletal Muscle Disuse Atrophy: Effects on Muscle Protein Synthesis, Breakdown, and Insulin Resistance-A Qualitative Review.

Front Physiol

Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK.

Published: September 2016

The ever increasing burden of an aging population and pandemic of metabolic syndrome worldwide demands further understanding of the modifiable risk factors in reducing disability and morbidity associated with these conditions. Disuse skeletal muscle atrophy (sometimes referred to as "simple" atrophy) and insulin resistance are "non-pathological" events resulting from sedentary behavior and periods of enforced immobilization e.g., due to fractures or elective orthopedic surgery. Yet, the processes and drivers regulating disuse atrophy and insulin resistance and the associated molecular events remain unclear-especially in humans. The aim of this review is to present current knowledge of relationships between muscle protein turnover, insulin resistance and muscle atrophy during disuse, principally in humans. Immobilization lowers fasted state muscle protein synthesis (MPS) and induces fed-state "anabolic resistance." While a lack of dynamic measurements of muscle protein breakdown (MPB) precludes defining a definitive role for MPB in disuse atrophy, some proteolytic "marker" studies (e.g., MPB genes) suggest a potential early elevation. Immobilization also induces muscle insulin resistance (IR). Moreover, the trajectory of muscle atrophy appears to be accelerated in persistent IR states (e.g., Type II diabetes), suggesting IR may contribute to muscle disuse atrophy under these conditions. Nonetheless, the role of differences in insulin sensitivity across distinct muscle groups and its effects on rates of atrophy remains unclear. Multifaceted time-course studies into the collective role of insulin resistance and muscle protein turnover in the setting of disuse muscle atrophy, in humans, are needed to facilitate the development of appropriate countermeasures and efficacious rehabilitation protocols.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997013PMC
http://dx.doi.org/10.3389/fphys.2016.00361DOI Listing

Publication Analysis

Top Keywords

muscle protein
20
insulin resistance
20
disuse atrophy
16
muscle atrophy
16
muscle
13
atrophy
10
skeletal muscle
8
muscle disuse
8
protein synthesis
8
atrophy insulin
8

Similar Publications

Background: This study aimed to evaluate the effects of 4-hexylresorcinol (4HR), a synthetic compound with antioxidant and stress-modulating properties, on diabetic sarcopenia in the masseter muscle.

Methods: A controlled, parallel-arm study was conducted using 38 Sprague-Dawley rats divided into diabetic and non-diabetic groups. Diabetes was induced with streptozotocin (STZ), and the groups were further subdivided to receive weekly subcutaneous injections of either 4HR or saline.

View Article and Find Full Text PDF

While acute exercise affects sarcoplasmic reticulum (SR) function, the impact of resistance training remains unclear. The purpose of the present study was to investigate SR Ca handling plasticity in response to moderate- and high-volume strength training in elite rowers. Twenty elite male (n = 12) and female (n = 8) rowers performed three weekly strength training sessions for 8 weeks and were randomly allocated to either perform 3 sets (3-SET) or progressive increase from 5 to 10 sets (10-SET) of 10 repetitions during the training period.

View Article and Find Full Text PDF

Effects of dietary Lactococcus lactis Z-2 on growth, host health and resistance to Aeromonas hydrophila in juvenile common carp (Cyprinus carpio L.).

J Sci Food Agric

January 2025

College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China.

Background: Lactococcus lactis Z-2 was previously isolated from common carp intestine. In order to investigate the effects of optimal dose of L. lactis Z-2 on growth, host health and disease resistance to Aeromonas hydrophila in common carp, five experimental diets, including without (CK and CK+ groups) or with 5 × 10 (group A), 5 × 10 (group B) and 5 × 10 CFU g (group C) L.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the potential relation between the retarded growth of skeletal muscle (SM) and dysbiosis of gut microbiota (GM) in children with asthma, and to explore the potential action mechanisms of traditional pediatric massage (TPM) from the perspective of regulating GM and short-chain fatty acids (SCFAs) production by using an adolescent rat model of asthma.

Methods: Male Sprague-Dawley rats aged 3weeks were divided randomly into the 5 groups (n=6~7) of control, ovalbumin (OVA), OVA + TPM, OVA + methylprednisolone sodium succinate (MP) and OVA + SCFAs. Pulmonary function (PF) was detected by whole body plethysmograph, including enhanced pause and minute ventilation.

View Article and Find Full Text PDF

Background: Previous studies reported significant relationships between obesity and pulmonary dysfunction. Here, we investigated genetic alterations in the lung tissues of high fat diet (HFD) induced obese mouse through transcriptomic and molecular analyses.

Methods: Eight-week-old male C57BL/6J mice were fed either a normal chow diet (NCD) or HFD for 12 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!