Chronic intermittent hypoxia (CIH) increases sympathetic tone and respiratory instability. Our previous work showed that chronic hypoxia induces the oxygen-sensing enzyme heme oxygenase-1 (HO-1) within the C1 sympathoexcitatory region and the pre-Bötzinger complex (pre-BötC). We therefore examined the effect of CIH on time course of induced expression of HO-1 within these regions and determined whether the induction of HO-1 correlated with changes in respiratory, sigh frequency, and sympathetic responses (spectral analysis of heart rate) to acute hypoxia (10% O) during 10 days of exposure to CIH in chronically instrumented awake wild-type (WT) and HO-1 null mice (HO-1). HO-1 was induced within the C1 and pre-BötC regions after 1 day of CIH. There were no significant differences in the baseline respiratory parameters between WT and HO-1 Prior to CIH, acute hypoxia increased respiratory frequency in both WT and HO-1; however, minute diaphragm electromyogram activity increased in WT but not HO-1 The hypoxic respiratory response after 1 and 10 days of CIH was restored in HO-1 CIH resulted in an initial significant decline in 1) the hypoxic sigh frequency response, which was restored in WT but not HO-1, and 2) the baseline sympathetic activity in WT and HO-1, which remained stable subsequently in WT but not in HO-1 We conclude that 1) CIH induces expression of HO-1 in the C1 and pre-BötC regions within 1 day and 2) HO-1 is necessary for hypoxia respiratory response and contributes to the maintenance of the hypoxic sigh responses and baseline sympathetic activity during CIH.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00036.2016DOI Listing

Publication Analysis

Top Keywords

ho-1
15
cih
9
chronic intermittent
8
intermittent hypoxia
8
expression ho-1
8
sigh frequency
8
acute hypoxia
8
pre-bötc regions
8
regions day
8
respiratory response
8

Similar Publications

We studied the effect of acteoside on a model of human corneal epithelial cells (HCEC) injury induced by HO. HCEC were divided into 4 groups and cultured for 24 h in normal medium (intact and control groups, respectively), or in a medium containing DMSO or 160 μM acteoside (DMSO and acteoside groups, respectively). Then, HO solution was added to HCEC for 4 h, except for intact cells.

View Article and Find Full Text PDF

4',5,6,7-tetrahydoxyisoflavone (6-hydroxygenistein, 6-OHG) is a hydroxylated derivative of genistein with excellent antioxidant activity, but whether 6-OHG can protect hypoxia-induced damage is unclear. The objective of current study was to evaluate the protective effect and underling mechanism of 6-OHG against hypoxia-induced injury via network pharmacology and cellular experiments. 6-OHG-related and hypoxia injury-related targets were screened by public databases.

View Article and Find Full Text PDF

Burn-induced mitochondrial dysfunction in hepatocytes: The role of methylation-controlled J protein silencing.

J Trauma Acute Care Surg

January 2025

From the Division of Gastrointestinal, Trauma, and Endocrine Surgery, Department of Surgery (A.P., K.M.M., A.C.Q., E.J.K., J.-P.I.), Division of Burn Research (E.J.K.), and Division of Alcohol Research (E.J.K.), Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado.

Background: Burn injuries trigger a systemic hyperinflammatory response, leading to multiple organ dysfunction, including significant hepatic damage. The liver plays a crucial role in regulating immune responses and metabolism after burn injuries, making it critical to develop strategies to mitigate hepatic impairment. This study investigates the role of methylation-controlled J protein (MCJ), an inner mitochondrial protein that represses complex I in burn-induced oxidative stress and mitochondrial dysfunction, using an in vitro Alpha Mouse Liver 12 cell model.

View Article and Find Full Text PDF

Copper-luteolin nanocomplexes for Mediating multifaceted regulation of oxidative stress, intestinal barrier, and gut microbiota in inflammatory bowel disease.

Bioact Mater

April 2025

School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China.

Oxidative stress, dysbiosis, and immune dysregulation have been confirmed to play pivotal roles in the complex pathogenesis of inflammatory bowel disease (IBD). Herein, we design copper ion-luteolin nanocomplexes (CuL NCs) through a metal-polyphenol coordination strategy, which plays a multifaceted role in the amelioration of IBD. The fabricated CuL NCs function as therapeutic agents with exceptional antioxidant and anti-inflammatory capabilities because of their great stability and capacity to scavenge reactive oxygen species (ROS).

View Article and Find Full Text PDF

Background: Purpose: Valproate (VPA) is an antiepileptic drug widely used to treat various psychiatric and neurological disorders. Although its use is generally considered safe, chronic administration may lead to kidney injury. The mechanisms underlying VPA kidney toxicity are not entirely explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!