We examined associations of advanced glycation end products (AGEs) with renal function loss (RFL) and its structural determinants in American Indians with type 2 diabetes. Data were from a 6-year clinical trial that assessed renoprotective efficacy of losartan. Participants remained under observation after the trial concluded. Glomerular filtration rate (GFR) was measured annually. Kidney biopsies were performed at the end of the trial. Five AGEs were measured in serum collected at enrollment and at kidney biopsy. RFL was defined as ≥40% decline of measured GFR from baseline. Of 168 participants (mean baseline age 41 years, HbA 9.2%, GFR 164 mL/min, and albumin-to-creatinine ratio 31 mg/g), 104 reached the RFL end point during median follow-up of 8.0 years. After multivariable adjustment, each doubling of carboxyethyl lysine (hazard ratio [HR] 1.60 [95% CI 1.08-2.37]) or methylglyoxal hydroimidazolone (HR 1.30 [95% CI 1.02-1.65]) concentration was associated with RFL. Carboxyethyl lysine, carboxymethyl lysine, and methylglyoxal hydroimidazolone correlated positively with cortical interstitial fractional volume (partial r = 0.23, P = 0.03; partial r = 0.25, P = 0.02; and partial r = 0.31, P = 0.003, respectively). Glyoxyl hydroimidazolone and methylglyoxal hydroimidazolone correlated negatively with total filtration surface per glomerulus (partial r = -0.26, P = 0.01; and partial r = -0.21, P = 0.046, respectively). AGEs improve prediction of RFL and its major structural correlates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5127241 | PMC |
http://dx.doi.org/10.2337/db16-0310 | DOI Listing |
Background: Here, we assessed the role of the advanced glycation end-product (AGE) precursor methylglyoxal (MGO) and its non-crosslinking AGE MGO-derived hydroimidazolone (MGH)-1 in aortic stiffening and explored the potential of a glycation stress-lowering compound (Gly-Low) to mitigate these effects.
Methods: Young (3-6 month) C57BL/6 mice were supplemented with MGO (in water) and Gly-Low (in chow). Aortic stiffness was assessed in vivo via pulse wave velocity (PWV) and ex vivo through elastic modulus.
Neurochem Res
November 2024
Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
J Physiol
November 2024
Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands.
Diabetes is associated with cognitive impairment, but the underlying mechanism remains unclear. Methylglyoxal (MGO), a precursor to advanced glycation endproducts (AGEs), is elevated in diabetes and linked to microvascular dysfunction. In this study, overexpression of the MGO-detoxifying enzyme glyoxalase 1 (Glo1) was used in a mouse model of diabetes to explore whether MGO accumulation in diabetes causes cognitive impairment.
View Article and Find Full Text PDFFood Chem
January 2025
Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Portici, Italy. Electronic address:
The role of the Maillard reaction and the accumulation of non-enzymatic glycation compounds in human milk have been scarcely considered. In this study, we investigated the proteins most susceptible to glycation, the identity of the corresponding modified residues and the quantitative relationship between protein-bound and free glycation compounds in raw human milk and, for comparison, in minimally processed infant formula and pasteurized bovine milk. In human milk, total protein-bound lysine modifications were up to 10% of the counterparts in infant formula, while Nε-carboxymethyllysine reached up to 27% of the concentration in the other two products.
View Article and Find Full Text PDFCrit Rev Toxicol
September 2024
Department of Toxicology, University of Würzburg, Würzburg, Germany.
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!