Background: Large-scale genetic studies have reported several loci associated with specific disorders involving uveitis. Our aim was to identify genetic risk factors that might predispose to uveitis per se, independent of the clinical diagnosis, by performing a dense genotyping of immune-related loci.
Methods: 613 cases and 3693 unaffected controls from three European case/control sets were genotyped using the Immunochip array. Only patients with non-infectious non-anterior uveitis and without systemic features were selected. To perform a more comprehensive analysis of the human leucocyte antigen (HLA) region, SNPs, classical alleles and polymorphic amino acid variants were obtained via imputation. A meta-analysis combining the three case/control sets was conducted by the inverse variance method.
Results: The highest peak belonged to the HLA region. A more detailed analysis of this signal evidenced a strong association between the classical allele HLA-A*2902 and birdshot chorioretinopathy (p=3.21E-35, OR=50.95). An omnibus test yielded HLA-A 62 and 63 as relevant amino acid positions for this disease. In patients with intermediate and posterior uveitis, the strongest associations belonged to the rs7197 polymorphism, within HLA-DRA (p=2.07E-11, OR=1.99), and the HLA-DR15 haplotype (DRB1*1501: p=1.16E-10, OR=2.08; DQA1*0102: p=4.37E-09, OR=1.77; DQB1*0602: p=7.26E-10, OR=2.02). Outside the HLA region, the MAP4K4/IL1R2 locus reached statistical significance (rs7608679: p=8.38E-07, OR=1.42). Suggestive associations were found at five other loci.
Conclusions: We have further interrogated the association between the HLA region and non-infectious non-anterior uveitis. In addition, we have identified a new non-HLA susceptibility factor and proposed additional risk loci with putative roles in this complex condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/jmedgenet-2016-104144 | DOI Listing |
Sci Rep
December 2024
National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand.
Inter-individual variability in drug responses is significantly influenced by genetic factors, underscoring the importance of population-specific pharmacogenomic studies to optimize clinical outcomes. In this study, we analyzed whole genome sequencing data from 949 unrelated Thai individuals and conducted an in-depth analysis of 3239 genes involved in drug pharmacokinetics, pharmacodynamics, or immune-mediated adverse drug reactions. We identified 43 single nucleotide polymorphisms (SNPs), 134 diplotypes, and 15 human leukocyte antigen (HLA) alleles, all with moderate to high clinical significance.
View Article and Find Full Text PDFNeurol Int
December 2024
Department of Immunology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
: Several significant associations between certain Human Leukocyte Antigen (HLA) alleles and myasthenia gravis (MG) subtypes were established in populations from Western Europe and North America and, to a lesser extent, from China and Japan. However, such data are scarcely available for Eastern Europe. This study aimed to analyze the associations of HLA Class I and II alleles with MG and its serological subtypes (with anti-acetylcholine receptor autoantibodies, RAch+MG, and double-seronegative, dSNMG) in myasthenic patients of Romanian descent.
View Article and Find Full Text PDFHLA
December 2024
Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
Novel KIR alleles KIR2DL1*0040135, KIR2DL1*112, KIR2DL1*0040136 and KIR3DL1*0010122, were identified using next-generation sequencing.
View Article and Find Full Text PDFTwo novel alleles, HLA-DRB1*14:270 and HLA-DPA1*01:222, were discovered in Russian individuals.
View Article and Find Full Text PDFHLA
December 2024
Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
HLA-G, an important immune-checkpoint (IC) molecule that exerts inhibitory signalling on immune effector cells, has been suggested to represent a key player in regulating the immune response to Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2). Since specific single-nucleotide polymorphisms (SNP) in the HLA-G 3'untranslated region (UTR), which arrange as haplotypes, are crucial for the regulation of HLA-G expression, we analysed the contribution of these genetic variants as host factors in SARS-CoV-2 infection during acute and post-acute phases. HLA-G gene polymorphisms in the 3'UTR were investigated by sequencing in an unvaccinated Coronavirus Disease 2019 (COVID-19) cohort during acute SARS-CoV-2 infection (N = 505) and in the post-acute phase (N = 253).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!