A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of aristolochic acids, aristololactams and their analogues using liquid chromatography tandem mass spectrometry. | LitMetric

Analysis of aristolochic acids, aristololactams and their analogues using liquid chromatography tandem mass spectrometry.

Chin J Nat Med

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. Electronic address:

Published: August 2016

More than 80 aristolochic acids (AAs) and aristololactams (ALs) have been found in plants of the Aristolochiaceae family, but relatively few have been fully studied. The present study aimed at developing and validating a liquid chromatography tandem mass spectrometry (LC/MS(n)) for the analysis of these compounds. We characterized the fragmentation behaviors of 31 AAs, ALs, and their analogues via high performance liquid chromatography coupled with electrospray ionization mass spectrometry. We summarized their fragmentation rules and used these rules to identify the constituents contained in Aristolochia contorta, Ar. debilis, Ar. manshurensis, Ar. fangchi, Ar. cinnabarina, and Ar. mollissima. The AAs and ALs showed very different MS behaviors. In MS(1) of AAs, the characteristic pseudomolecular ions were [M + NH4](+), [M + H](+), and [M + H - H2O](+). However, only [M + H](+) was found in the MS(1) of ALs, which was simpler than that of AAs. Distinct MS(n)fragmentation patterns were found for AAs and ALs, showing the same skeleton among the different substituent groups. The distribution of the 31 constituents in the 6 species of Aristolochia genus was reported for the first time. 25 Analogues of AAs and ALs were detected in this genus. A hierarchical schemes and a calculating formula of the molecular formula of these nitrophenanthrene carboxylic acids and their lactams were proposed. In conclusion, this method could be applied to identification of similar unknown constituents in other plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1875-5364(16)30074-7DOI Listing

Publication Analysis

Top Keywords

aas als
16
liquid chromatography
12
mass spectrometry
12
aristolochic acids
8
chromatography tandem
8
tandem mass
8
aas
7
als
6
analysis aristolochic
4
acids aristololactams
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!