We report comparison of lasing dynamics in InAs quantum dot (QD) micro-disk lasers (MDLs) monolithically grown on V-groove patterned and planar Si (001) substrates. TEM characterizations reveal abrupt interfaces and reduced threading dislocations in the QD active regions when using the GaAs-on-V-grooved-Si template. The improved crystalline quality translates into lower threshold power in the optically pumped continuous-wave MDLs. Concurrent evaluations were also made with devices fabricated simultaneously on lattice-matched GaAs substrates. Lasing behaviors from 10 K up to room temperature have been studied systematically. The analyses spotlight insights into the optimal epitaxial scheme to achieve low-threshold lasing in telecommunication wavelengths on exact Si (001) substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.24.021038 | DOI Listing |
Nat Commun
December 2024
Peter Gruenberg Institute 9 (PGI-9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Juelich, 52428, Juelich, Germany.
Over the last 30 years, group-IV semiconductors have been intensely investigated in the quest for a fundamental direct bandgap semiconductor that could yield the last missing piece of the Si Photonics toolbox: a continuous-wave Si-based laser. Along this path, it has been demonstrated that the electronic band structure of the GeSn/SiGeSn heterostructures can be tuned into a direct bandgap quantum structure providing optical gain for lasing. In this paper, we present a versatile electrically pumped, continuous-wave laser emitting at a near-infrared wavelength of 2.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
School of Electrical Engineering, University of South China, Hengyang 421001, China.
Materials (Basel)
April 2024
Songshan Lake Materials Laboratory, Dongguan 523808, China.
The direct growth of III-V quantum dot (QD) lasers on silicon substrate has been rapidly developing over the past decade and has been recognized as a promising method for achieving on-chip light sources in photonic integrated circuits (PICs). Up to date, O- and C/L-bands InAs QD lasers on Si have been extensively investigated, but as an extended telecommunication wavelength, the E-band QD lasers directly grown on Si substrates are not available yet. Here, we demonstrate the first E-band (1365 nm) InAs QD micro-disk lasers epitaxially grown on Si (001) substrates by using a III-V/IV hybrid dual-chamber molecular beam epitaxy (MBE) system.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2024
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
Direct epitaxy of InP quantum dot (QD) lasers on silicon (Si) provides an on-chip red laser source for integrated Si photonics with different applications. Here, we demonstrate the first, to the best of our knowledge, InP QD lasers directly grown on (001) Si. Combining highly emissive InP QDs and a GaAs/Si template with low defect density, continuous-wave (CW) lasing of micro-disk lasers (MDLs) on Si is achieved at room temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!