Film display holograms typically diffract light over a wide enough view-angle to be viewed, directly, without intervening optics. However, all holographic video displays (with the exception of eye-tracked systems) must use optics beyond the hologram surface to overcome the challenges of small display extent and low diffraction angle by using some form of demagnification and derotation (i.e. angle magnification and optical multiplexing). We report a leaky mode waveguide spatial light modulator with sufficiently high angular diffraction to obviate the need for demagnification in scanned aperture systems. This high angle was achieved by performing a number of experiments to determine the depth of the annealed, proton-exchanged waveguide which corresponded to a maximized diffracted angle. Diffraction sweeps were recorded in excess of 19.5° (corresponding to only 70 MHz of input bandwidth) for 632.8 nm light which is above the 15° required for direct view display. Device geometries are proposed which might achieve greater than 20° of total angular sweep for red, green, and blue light.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.24.020831 | DOI Listing |
Computer-generated holography (CGH) is an advanced technology for three-dimensional (3D) displays. While the stochastic gradient descent (SGD) method is effective for holographic optimization, its application to holographic video displays is computationally expensive, as each frame requires separate optimization. To address this, we propose a novel, to the best of our knowledge, clustering optimization strategy to accelerate the SGD process for holographic video displays.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Department of Computer Science, University of Maryland, College Park, MD 20742, USA.
Three-dimensional (3D) display can provide more information than two-dimensional display, and real-time 3D reconstruction of the real-world environment has broad application prospects as a key technology in the field of meta-universe and Internet of Things. 3D holographic display is considered to be an ideal 3D display scheme, thus enhancing the computational speed and reconstruction quality of 3D holograms can offer substantial support for real-time 3D reconstruction. Here, we proposed a real-time 3D holographic photography for real-world scenarios driven by both physical model and artificial intelligence.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Department of Otorhinolaryngology, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
Augmented reality technologies provide transformative solutions in various surgical fields. Our research focuses on the use of an advanced augmented reality system that projects 3D holographic images directly into surgical footage, potentially improving the surgeon's orientation to the surgical field and lowering the cognitive load. We created a novel system that combines exoscopic surgical footage from the "ORBEYE" and displays both the surgical field and 3D holograms on a single screen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!