It is generally true that the orbital angular momentum (OAM) mode persistently degenerate when a vortex beam propagates in the atmospheric turbulence. Here, however, we unveil an interesting self-recovery effect of OAM mode of the circular beam (CiB) in weak non-Kolmogorov turbulence. We show that the CiB displays the self-focusing effect and has clear focus in the weak non-Kolmogorov turbulence if we choose proper complex parameters, and the detection probability of the original OAM mode reaches the maximum at the focus. Our study proposes a method to alleviate the turbulent effects on OAM-based communication.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.020507DOI Listing

Publication Analysis

Top Keywords

weak non-kolmogorov
12
non-kolmogorov turbulence
12
oam mode
12
orbital angular
8
angular momentum
8
mode circular
8
circular beam
8
self-recovery orbital
4
mode
4
momentum mode
4

Similar Publications

The competition between turbulence and thermal blooming significantly affects the propagation characteristics of laser beams in the atmosphere. Here, taking the propagation of a vortex beam array in a non-Kolmogorov marine atmosphere as an example, we have quantitatively analyzed the competition between turbulence and thermal blooming. The atmospheric coherence length is adopted to evaluate the turbulence strength, while a modified thermal distortion parameter is developed to evaluate the thermal blooming strength of vortex beam arrays in non-Kolmogorov turbulence.

View Article and Find Full Text PDF

In recent years, free-space optical communication based on various vortex beams has gained significant attention due to its high channel capacity and low bit error rate (BER). To investigate a novel type of vortex beam (termed as gamma beam) and its application in free-space optical communication (FSO), a comprehensive analysis of its transmission performance in weak-to-strong non-Kolmogorov turbulence has been conducted for the first time. Based on the extended Rytov method, the propagation behaviors of the gamma beam via weak-to-strong non-Kolmogorov turbulent atmosphere is explored, revealing that gamma beams may outperform LG beams and HyGG beams in certain short links.

View Article and Find Full Text PDF

Deep-space optical communication has garnered increasing attention for its high data transfer rate, wide bandwidth, and high transmission speed. However, coronal plasma turbulence severely degrades optical signals during superior solar conjunction. In this study, we introduce the models for plasma density and generalized non-Kolmogorov turbulence power spectrum.

View Article and Find Full Text PDF

Probing dynamical sensitivity of a non-Kolmogorov-Arnold-Moser system through out-of-time-order correlators.

Phys Rev E

January 2024

Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India and Center for Quantum Information, Communication and Computation, Indian Institute of Technology Madras, Chennai 600036, India.

Non-Kolmogorov-Arnold-Moser (KAM) systems, when perturbed by weak time-dependent fields, offer a fast route to classical chaos through an abrupt breaking of invariant phase-space tori. In this work, we employ out-of-time-order correlators (OTOCs) to study the dynamical sensitivity of a perturbed non-KAM system in the quantum limit as the parameter that characterizes the resonance condition is slowly varied. For this purpose, we consider a quantized kicked harmonic oscillator (KHO) model, which displays stochastic webs resembling Arnold's diffusion that facilitate large-scale diffusion in the phase space.

View Article and Find Full Text PDF

Novel Detection of Atmospheric Turbulence Profile Using Mie-Scattering Lidar Based on Non-Kolmogorov Turbulence Theory.

Entropy (Basel)

March 2023

School of Electrical and Information Engineering, North Minzu University, North Wenchang Road, Yinchuan 750021, China.

Turbulence can cause effects such as light intensity fluctuations and phase fluctuations when a laser is transmitted in the atmosphere, which has serious impacts on a number of optical engineering application effects and on climate improvement. Therefore, accurately obtaining real-time turbulence intensity information using lidar-active remote sensing technology is of great significance. In this paper, based on residual turbulent scintillation theory, a Mie-scattering lidar method was developed to detect atmospheric turbulence intensity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!