Transient electromagnetic interactions on plasmonic nanostructures are analyzed by solving the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) surface integral equation (SIE). Equivalent (unknown) electric and magnetic current densities, which are introduced on the surfaces of the nanostructures, are expanded using Rao-Wilton-Glisson and polynomial basis functions in space and time, respectively. Inserting this expansion into the PMCHWT-SIE and Galerkin testing the resulting equation at discrete times yield a system of equations that is solved for the current expansion coefficients by a marching on-in-time (MOT) scheme. The resulting MOT-PMCHWT-SIE solver calls for computation of additional convolutions between the temporal basis function and the plasmonic medium's permittivity and Green function. This computation is carried out with almost no additional cost and without changing the computational complexity of the solver. Time-domain samples of the permittivity and the Green function required by these convolutions are obtained from their frequency-domain samples using a fast relaxed vector fitting algorithm. Numerical results demonstrate the accuracy and applicability of the proposed MOT-PMCHWT solver.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.33.001747 | DOI Listing |
Molecules
January 2025
Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan International Joint Laboratory of Sustainable Polymers, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry.
View Article and Find Full Text PDFMolecules
December 2024
School of Life Science, Shanxi University, Taiyuan 030006, China.
Malic acid-derived polyamides, polyhydrazides, and hydrazides exhibit strong potential for a variety of biological applications. This study demonstrates the synthesis of cobalt, silver, copper, zinc, and iron particles by a facile chemical reduction approach utilizing malic acid-derived polyamides, polyhydrazides, and hydrazides as stabilizing and reducing agents. Comprehensive characterization of the particles was performed using UV-Vis spectroscopy, FTIR, XRD, SEM, and EDX analysis.
View Article and Find Full Text PDFInt J Pharm
January 2025
Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark. Electronic address:
Oligonucleotides represent a class of molecules that exhibit remarkable therapeutic potential due to their unparalleled target specificity, yet they suffer from limited cellular uptake and lack of tissue selectivity. Extensive research is conducted with cell-penetrating peptides (CPPs) as delivery excipients due to their ability to translocate across cellular membranes and deliver cargo into cells. This study aims to investigate an innovative approach to rapidly, and with small amounts of compound, analyze and compare complexation of CPPs to oligonucleotides.
View Article and Find Full Text PDFACS Nano
January 2025
Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil.
Monolayers of transition-metal dichalcogenides, such as MoS, have attracted significant attention for their exceptional electronic and optical properties, positioning them as ideal candidates for advanced optoelectronic applications. Despite their strong excitonic effects, the atomic-scale thickness of these materials limits their light absorption efficiency, necessitating innovative strategies to enhance light-matter interactions. Plasmonic nanostructures offer a promising solution to overcome those challenges by amplifying the electromagnetic field and also introducing other mechanisms, such as hot electron injection.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, Columbia University, New York, NY, USA.
Among expanding discoveries of quantum phases in moiré superlattices, correlated insulators stand out as both the most stable and most commonly observed. Despite the central importance of these states in moiré physics, little is known about their underlying nature. Here, we use pump-probe spectroscopy to show distinct time-domain signatures of correlated insulators at fillings of one (ν = -1) and two (ν = -2) holes per moiré unit cell in the angle-aligned WSe/WS system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!