A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of age and physical activity status on redistribution of joint work during walking. | LitMetric

Effects of age and physical activity status on redistribution of joint work during walking.

Gait Posture

Department of Kinesiology, Iowa State University, Ames, IA 50011, United States. Electronic address:

Published: October 2016

During walking older adults rely less on ankle and more on hip work than young adults. Disproportionate declines in plantarflexor strength may be a mechanism underlying this proximal work redistribution. We tested the hypothesis that proximal redistribution is more apparent in older compared to young adults and in sedentary compared to active individuals over multiple walking speeds. We recruited 18 young (18-35 yrs) and 17 older (65-80 yrs) physically active and sedentary adults. Participants completed five trials at four walking speeds as marker positions and ground reaction forces were collected. Sagittal plane net joint moments were computed using inverse dynamics. Instantaneous joint powers for the ankle, knee, and hip were computed as products of net joint moments and joint angular velocities. Positive joint work was computed by integrating hip, knee, and ankle joint powers over time in early, mid, and late stance, respectively. Relative joint work was expressed as a percentage of total work. Isokinetic strength of lower limb flexor and extensor muscles was measured. Older adults had lower relative ankle (p=0.005) and higher relative hip (p=0.007) work than young adults for multiple speeds. Non-significant trends (p<0.10) indicating sedentary participants had lower relative ankle (p=0.068) and higher relative hip work (p=0.087) than active adults were observed. Age-related differences in plantarflexor strength were not disproportionate compared to strength differences in knee and hip musculature. Age influenced proximal work redistribution over multiple walking speeds. Physical activity status showed a similar trend for proximal work redistribution, but failed to reach statistical significance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gaitpost.2016.08.034DOI Listing

Publication Analysis

Top Keywords

joint work
12
young adults
12
joint
8
older adults
8
work young
8
walking speeds
8
net joint
8
joint moments
8
joint powers
8
work
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!