Chirality Relay in 2,2'-Substituted 1,1'-Binaphthyl: Access to Propeller Chirality of the Tricoordinate Boron Center.

Chemistry

School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan, 250100, P. R. China.

Published: November 2016

It is a challenging issue to achieve propeller chirality for triarylboranes owing to the low transition barrier between the P and M forms of the boron center. Herein, we report a new strategy to achieve propeller chirality of triarylboranes. It was found that the chirality relay from axially chiral 1,1'-binaphthyl to propeller chirality of the trivalent boron center can be realized when a Me N and a Mes B group (Mes=mesityl) are introduced at the 2,2'-positions of the 1,1'-binaphthyl skeleton (BN-BNaph) owing to the strong π-π interaction between the Me N-bonded naphthyl ring and the phenyl ring of one adjacent Mes group, which not only exerts great steric hindrance on the rotation of the two Mes groups but also gives unequal stability to the two configurations of the boron center for a given configuration of the binaphthyl moiety. The stereostructures of the boron center were fully characterized through H NMR spectroscopy, X-ray crystal analyses, and theoretical calculations. Detailed comparisons with the analog BN-Ph-BNaph, in which the Mes B group is separated from 1,1'-binaphthyl by a para-phenylene spacer, confirmed the essential role of π-π interaction for the successful chirality relay in BN-BNaph.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201602984DOI Listing

Publication Analysis

Top Keywords

boron center
20
propeller chirality
16
chirality relay
12
mes group
12
achieve propeller
8
chirality triarylboranes
8
π-π interaction
8
chirality
7
boron
5
center
5

Similar Publications

To understand the interactions of entomopathogenic fungi with forage plants and their influence on associated herbivorous, we evaluated the influence of endophytic colonization with three isolates (CEPAF_ENT 25, CEPAF_ENT 27, and IBCB 425) of Metarhizium anisopliae on Cynodon dactylon, regarding the biological and behavioral aspects of Collaria scenica, an emerging sucking pest in pastoral systems in Brazil. The application of suspensions at the base of plant (drench) was effective in promoting endophytic colonization, especially in the roots, with emphasis on isolates CEPAF_ENT25 and CEPAF_ENT27. Despite the significant reduction in damage caused by C.

View Article and Find Full Text PDF

Heterogeneous head phantom for validating treatment planning system in boron neutron capture therapy.

Appl Radiat Isot

January 2025

Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan; Nuclear Science and Technology Development Center, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan. Electronic address:

In clinical boron neutron capture therapy (BNCT), the distribution of dose to a heterogeneous medium that is predicted by a treatment planning system (TPS) should be experimentally validated. A head phantom specifically developed for this purpose is described and demonstrated herein. The cylindrical phantom exhibits distinct regions made from four materials (polymethyl methacrylate, calcium phosphate, air, and boric acid) to approximate a head structure with explicitly defined skin, skull, and brain tissue with a cavity and tumor within.

View Article and Find Full Text PDF

Ductilization of 2.6-GPa alloys via short-range ordered interfaces and supranano precipitates.

Science

January 2025

Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Hysitron Applied Research Center in China (HARCC) and Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.

Higher strength and higher ductility are desirable for structural materials. However, ultrastrong alloys inevitably show decreased strain-hardening capacity, limiting their uniform elongation. We present a supranano (<10 nanometers) and short-range ordering design for grain interiors and grain boundary regions, respectively, in fine-grained alloys based on vanadium, cobalt, and nickel, with additions of tungsten, copper, aluminum, and boron.

View Article and Find Full Text PDF

Unveiling a Tunable Moiré Bandgap in Bilayer Graphene/hBN Device by Angle-Resolved Photoemission Spectroscopy.

Adv Sci (Weinh)

January 2025

School of Physical Science and Technology, ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, 201210, P. R. China.

Over the years, great efforts have been devoted in introducing a sizable and tunable band gap in graphene for its potential application in next-generation electronic devices. The primary challenge in modulating this gap has been the absence of a direct method for observing changes of the band gap in momentum space. In this study, advanced spatial- and angle-resolved photoemission spectroscopy technique is employed to directly visualize the gap formation in bilayer graphene, modulated by both displacement fields and moiré potentials.

View Article and Find Full Text PDF

Electrons in topological flat bands can form new topological states driven by correlation effects. The pentalayer rhombohedral graphene/hexagonal boron nitride (hBN) moiré superlattice was shown to host fractional quantum anomalous Hall effect (FQAHE) at approximately 400 mK (ref. ), triggering discussions around the underlying mechanism and role of moiré effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!