Many calls to improve science education in college and university settings have focused on improving instructor pedagogy. Meanwhile, science education at the K-12 level is undergoing significant changes as a result of the emphasis on scientific and engineering practices, crosscutting concepts, and disciplinary core ideas. This framework of "three-dimensional learning" is based on the literature about how people learn science and how we can help students put their knowledge to use. Recently, similar changes are underway in higher education by incorporating three-dimensional learning into college science courses. As these transformations move forward, it will become important to assess three-dimensional learning both to align assessments with the learning environment, and to assess the extent of the transformations. In this paper we introduce the Three-Dimensional Learning Assessment Protocol (3D-LAP), which is designed to characterize and support the development of assessment tasks in biology, chemistry, and physics that align with transformation efforts. We describe the development process used by our interdisciplinary team, discuss the validity and reliability of the protocol, and provide evidence that the protocol can distinguish between assessments that have the potential to elicit evidence of three-dimensional learning and those that do not.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5015839PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162333PLOS

Publication Analysis

Top Keywords

three-dimensional learning
20
college science
8
learning assessment
8
assessment protocol
8
science education
8
learning
6
science
5
three-dimensional
5
characterizing college
4
science assessments
4

Similar Publications

Although the Transformer architecture has established itself as the industry standard for jobs involving natural language processing, it still has few uses in computer vision. In vision, attention is used in conjunction with convolutional networks or to replace individual convolutional network elements while preserving the overall network design. Differences between the two domains, such as significant variations in the scale of visual things and the higher granularity of pixels in images compared to words in the text, make it difficult to transfer Transformer from language to vision.

View Article and Find Full Text PDF

Recipes and ingredients for deep learning models of 3D genome folding.

Curr Opin Genet Dev

January 2025

Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA. Electronic address:

Three-dimensional genome folding plays roles in gene regulation and disease. In this review, we compare and contrast recent deep learning models for predicting genome contact maps. We survey preprocessing, architecture, training, evaluation, and interpretation methods, highlighting the capabilities and limitations of different models.

View Article and Find Full Text PDF

Application of Additive Manufacturing and Deep Learning in Exercise State Discrimination.

Sensors (Basel)

January 2025

Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.

With the rapid development of sports technology, smart wearable devices play a crucial role in athletic training and health management. Sports fatigue is a key factor affecting athletic performance. Using smart wearable devices to detect the onset of fatigue can optimize training, prevent excessive fatigue and resultant injury, and increase efficiency and safety.

View Article and Find Full Text PDF

Overview and Prospects of DNA Sequence Visualization.

Int J Mol Sci

January 2025

School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China.

Due to advances in big data technology, deep learning, and knowledge engineering, biological sequence visualization has been extensively explored. In the post-genome era, biological sequence visualization enables the visual representation of both structured and unstructured biological sequence data. However, a universal visualization method for all types of sequences has not been reported.

View Article and Find Full Text PDF

Protein-Protein Interaction (PPI) prediction plays a pivotal role in understanding cellular processes and uncovering molecular mechanisms underlying health and disease. Structure-based PPI prediction has emerged as a robust alternative to sequence-based methods, offering greater biological accuracy by integrating three-dimensional spatial and biochemical features. This work summarizes the recent advances in computational approaches leveraging protein structure information for PPI prediction, focusing on machine learning (ML) and deep learning (DL) techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!