Mechanisms of temporal identity regulation in mouse retinal progenitor cells.

Neurogenesis (Austin)

Cellular Neurobiology Research Unit; Institut de recherches cliniques de Montréal Montréal, QC, Canada; Department of Medicine; Université de Montréal Montréal, QC, Canada; Department of Anatomy and Cell Biology and Division of Experimental Medicine; McGill University Montréal, QC, Canada.

Published: September 2016

While much progress has been made in recent years toward elucidating the transcription factor codes controlling how neural progenitor cells generate the various glial and neuronal cell types in a particular spatial domain, much less is known about how these progenitors alter their output over time. In the past years, work in the developing mouse retina has provided evidence that a transcriptional cascade similar to the one used in Drosophila neuroblasts might control progenitor temporal identity in vertebrates. The zinc finger transcription factor Ikzf1 (Ikaros), an ortholog of Drosophila hunchback, was reported to confer early temporal identity in retinal progenitors and, more recently, the ortholog of Drosophila castor, Casz1, was found to function as a mid/late temporal identity factor that is negatively regulated by Ikzf1. The molecular mechanisms by which these temporal identity factors function in retinal progenitors, however, remain unknown. Here we briefly review previous work on the vertebrate temporal identity factors in the retina, and propose a model by which they might operate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973599PMC
http://dx.doi.org/10.1080/23262133.2015.1125409DOI Listing

Publication Analysis

Top Keywords

temporal identity
24
mechanisms temporal
8
progenitor cells
8
transcription factor
8
ortholog drosophila
8
retinal progenitors
8
identity factors
8
identity
6
temporal
5
identity regulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!