The Planar Cell Polarity Transmembrane Protein Vangl2 Promotes Dendrite, Spine and Glutamatergic Synapse Formation in the Mammalian Forebrain.

Mol Neuropsychiatry

Department of Psychiatry, Stanford University, Palo Alto, Calif., USA; Tetrad Graduate Program, Stanford University, Palo Alto, Calif., USA; UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, Calif., USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco (UCSF), San Francisco, Calif., USA.

Published: July 2016

The transmembrane protein Vangl2, a key regulator of the Wnt/planar cell polarity (PCP) pathway, is involved in dendrite arbor elaboration, dendritic spine formation and glutamatergic synapse formation in mammalian central nervous system neurons. Cultured forebrain neurons from Vangl2 knockout mice have simpler dendrite arbors, fewer total spines, less mature spines and fewer glutamatergic synapse inputs on their dendrites than control neurons. Neurons from mice heterozygous for a semidominant Vangl2 mutation have similar but not identical phenotypes, and these phenotypes are also observed in Golgi-stained brain tissue from adult mutant mice. Given increasing evidence linking psychiatric pathophysiology to these subneuronal sites and structures, our findings underscore the relevance of core PCP proteins including Vangl2 to the underlying biology of major mental illnesses and their treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996007PMC
http://dx.doi.org/10.1159/000446778DOI Listing

Publication Analysis

Top Keywords

glutamatergic synapse
12
cell polarity
8
transmembrane protein
8
protein vangl2
8
synapse formation
8
formation mammalian
8
vangl2
5
planar cell
4
polarity transmembrane
4
vangl2 promotes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!