A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biosynthesis of silver nanoparticles from mangrove plant (Avicennia marina) extract and their potential mosquito larvicidal property. | LitMetric

Biosynthesis of silver nanoparticles from mangrove plant (Avicennia marina) extract and their potential mosquito larvicidal property.

J Parasit Dis

Marine Gastropod Hatchery & Research Laboratory, Department of Zoology, Kamaraj College, Manonmaniam Sundaranar University, Tuticorin, 628 003 Tamil Nadu India.

Published: September 2016

To identify the larvicidal activities of silver nanoparticles synthesised with Avicennia marina leaf extract against the larvae of Aedes aegypti and Anopheleus stephensi, in vitro larvicidal activities such as LC50 and LC90 were assessed. Further, characterisation such as UV and FTIR analysis were carried out for the synthesised silver nanoparticles. The LC50 value of the synthesised silver nanoparticles was identified as 4.374 and 7.406 mg/L for An. stephensi and Ae. aegypti larvae respectively. Further, the LC90 values are also identified as 4.928 and 9.865 mg/L for An. stephensi and Ae. aegypti species respectively. The synthesised silver nanoparticles have maximum absorption at 420 nm with the average size of 60-95 nm. The FTIR data showed prominent peaks in (3940.57, 3929.00, 3803.63, 3712.97, 2918.30, 2231.64, 1610.50, 1377.17, 1257.59, 1041.59, 1041.56, 775.38, 667.37 and 503.21) different ranges. The biosynthesis of silver nanoparticles with leaf aqueous extract of A. marina provides potential source for the larvicidal activity against mosquito borne diseases. The present study proved the mosquitocidal properties of silver nanoparticles synthesised from mangroves of Vellar estuary. This is an ideal eco-friendly approach for the vector control programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996234PMC
http://dx.doi.org/10.1007/s12639-014-0621-5DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
28
synthesised silver
12
biosynthesis silver
8
avicennia marina
8
larvicidal activities
8
nanoparticles synthesised
8
stephensi aegypti
8
nanoparticles
7
silver
6
synthesised
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!