AI Article Synopsis

Article Abstract

Unlabelled: To effectively infect cells, Lassa virus needs to switch in an endosomal compartment from its primary receptor, α-dystroglycan, to a protein termed LAMP1. A unique histidine triad on the surface of the receptor-binding domain from the glycoprotein spike complex of Lassa virus is important for LAMP1 binding. Here we investigate mutated spikes that have an impaired ability to interact with LAMP1 and show that although LAMP1 is important for efficient infectivity, it is not required for spike-mediated membrane fusion per se Our studies reveal important regulatory roles for histidines from the triad in sensing acidic pH and preventing premature spike triggering. We further show that LAMP1 requires a positively charged His230 residue to engage with the spike complex and that LAMP1 binding promotes membrane fusion. These results elucidate the molecular role of LAMP1 binding during Lassa virus cell entry and provide new insights into how pH is sensed by the spike.

Importance: Lassa virus is a devastating disease-causing agent in West Africa, with a significant yearly death toll and severe long-term complications associated with its infection in survivors. In recent years, we learned that Lassa virus needs to switch receptors in a pH-dependent manner to efficiently infect cells, but neither the molecular mechanisms that allow switching nor the actual effects of switching were known. Here we investigate the activity of the viral spike complex after abrogation of its ability to switch receptors. These studies inform us about the role of switching receptors and provide new insights into how the spike senses acidic pH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105667PMC
http://dx.doi.org/10.1128/JVI.01624-16DOI Listing

Publication Analysis

Top Keywords

lassa virus
24
lamp1 binding
16
spike complex
16
role lamp1
8
complex lassa
8
infect cells
8
virus switch
8
membrane fusion
8
provide insights
8
switch receptors
8

Similar Publications

Current perspectives on vaccines and therapeutics for Lassa Fever.

Virol J

December 2024

Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.

Lassa virus, the cause of deadly Lassa fever, is endemic in West Africa, where thousands of cases occur on an annual basis. Nigeria continues to report increasingly severe outbreaks of Lassa Fever each year and there are currently no approved vaccines or therapeutics for the prevention or treatment of Lassa Fever. Given the high burden of disease coupled with the potential for further escalation due to climate change the WHO has listed Lassa virus as a priority pathogen with the potential to cause widespread outbreaks.

View Article and Find Full Text PDF

Systematic Review and Meta-Analysis of Female Reproductive Health Following Ebola Virus Disease.

Am J Trop Med Hyg

December 2024

Department of Medicine, Section of Infectious Diseases, School of Medicine, Tulane University, New Orleans, Louisiana.

Article Synopsis
  • The systematic review focuses on reproductive health issues faced by female survivors of Lassa fever and Ebola virus disease.
  • Thirteen studies reviewed predominantly highlight negative outcomes related to reproductive health among EVD survivors, including menstrual irregularities and pregnancy loss, with no research identified on LF survivors.
  • The analysis indicates that about 14% of female EVD survivors experience adverse reproductive health outcomes, revealing a significant need for further research in this area.
View Article and Find Full Text PDF

U-73122, a phospholipase C inhibitor, impairs lymphocytic choriomeningitis virus virion infectivity.

J Gen Virol

December 2024

Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.

Lassa virus (LASV) is an Old World (OW) mammarenavirus that causes Lassa fever, a life-threatening acute febrile disease endemic in West Africa. Lymphocytic choriomeningitis virus (LCMV) is a worldwide-distributed, prototypic OW mammarenavirus of clinical significance that has been largely neglected as a human pathogen. No licensed OW mammarenavirus vaccines are available, and the current therapeutic option is limited to the off-label use of ribavirin, which offers only partial efficacy.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores how Lassa fever develops and the factors that determine whether it results in a mild or severe illness, using a monkey model to replicate different disease outcomes.
  • - It finds that lymphoid organs are key early sites for the replication of the Lassa virus, which can enter through lymph node structures regardless of whether the infection is fatal or not.
  • - The severity of the disease correlates with how the virus spreads; in nonfatal cases, it largely stays within lymphoid tissues, while fatal outcomes see the virus invade multiple organs, triggering a strong immune inflammatory response.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!