Species richness varies dramatically among clades across the Tree of Life, by over a million-fold in some cases (e.g. placozoans versus arthropods). Two major explanations for differences in richness among clades are the clade-age hypothesis (i.e. species-rich clades are older) and the diversification-rate hypothesis (i.e. species-rich clades diversify more rapidly, where diversification rate is the net balance of speciation and extinction over time). Here, we examine patterns of variation in diversification rates across the Tree of Life. We address how rates vary across higher taxa, whether rates within higher taxa are related to the subclades within them, and how diversification rates of clades are related to their species richness. We find substantial variation in diversification rates, with rates in plants nearly twice as high as in animals, and rates in some eukaryotes approximately 10-fold faster than prokaryotes. Rates for each kingdom-level clade are then significantly related to the subclades within them. Although caution is needed when interpreting relationships between diversification rates and richness, a positive relationship between the two is not inevitable. We find that variation in diversification rates seems to explain most variation in richness among clades across the Tree of Life, in contrast to the conclusions of previous studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031659 | PMC |
http://dx.doi.org/10.1098/rspb.2016.1334 | DOI Listing |
Sci Rep
January 2025
Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.
The evolutionary history underlying gradients in species richness is still subject to discussions and understanding the past niche evolution might be crucial in estimating the potential of taxa to adapt to changing environmental conditions. In this study we intend to contribute to elucidation of the evolutionary history of liverwort species richness distributions along elevational gradients at a global scale. For this purpose, we linked a comprehensive data set of genus occurrences on mountains worldwide with a time-calibrated phylogeny of liverworts and estimated mean diversification rates (DivElev) and mean ages (AgeElev) of the respective genera per elevational band.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK.
Negative scaling relationships between both speciation and extinction rates, on the one hand, and the age or duration of organismal groups on the other, are pervasive and recovered in both molecular phylogenetic and fossil time series. The agreement between molecular and fossil data hints at a universal cause and potentially at incongruence between micro- and macroevolution. However, the existence of negative rate scaling in fossil time series has not undergone the same level of scrutiny as in molecular data.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Red de Biología Evolutiva, Instituto de Ecología A.C., Xalapa, Veracruz CP 91073, Mexico.
The movement of species to new geographical areas has been proposed to be crucial for speciation. As such, dispersal has been regarded as a likely explanation for the variation in species richness among clades. The Emberizoidea are a highly diverse Oscine bird clade native to the New World that has been characterized for their ubiquitous distribution both ecologically and geographically, making this group ideal to test how biogeographical dispersal could promote speciation.
View Article and Find Full Text PDFClin Microbiol Infect
January 2025
Unidad de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena and Departamento de Medicina, Universidad de Sevilla/Instituto de Biomedicina de Sevilla/CSIC, Seville, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC). Instituto de Salud Carlos III, Madrid, Spain. Electronic address:
Objectives: The FOSFO-MIC study assessed the clinical and microbiological effectiveness, and safety of intravenous fosfomycin in treating complicated urinary tract infections (cUTIs) caused by Escherichia coli, in comparison with other intravenous antimicrobials.
Methods: A prospective, multinational matched-cohorts study involving adults with community-acquired cUTIs and receiving targeted therapy with intravenous fosfomycin or other first-line drugs (beta-lactams or fluoroquinolones) was conducted from November 2019 to May 2023 in 10 centres from Spain, Italy, and Türkiye. Matching criteria included healthcare-relation, Charlson and Pitt scores.
PLoS Genet
January 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!