Potential applications of polyoxometalates for the discrimination of human papillomavirus in different subtypes.

Dalton Trans

State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China.

Published: October 2016

The binding-induced luminescence enhancement of an Eu-containing polyoxometalate (POM), EuSiWMo, by the arginin/lysine-rich cationic peptides supplied a platform to detect the capsid proteins of human papillomaviruses (HPVs). However, the strong binding affinity between them makes it very difficult to be differentiated among peptides from different subtypes of HPVs. Therefore, several strategies to monitor the binding affinity of POM-peptide are performed and finally the discriminations on representative peptides from different subtypes of HPV capsid proteins are achieved in the present study. The results show that an Eu-containing POM, EuW10, with nine negative charges is sufficient to discriminate different subtypes of HPV peptides based on the specific sequence and basic charge differences. The discrimination mechanisms between them explored at sub-molecular level using time-resolved fluorescence spectra and isotherm titration calorimetric (ITC) reveal both the driving force and binding model accordingly. Therefore, this study reports a simple, low-cost and efficient fluorescence enhanced method to discriminate the peptides from different subtypes of HPV capsid proteins, which would be possible after further optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6dt02186gDOI Listing

Publication Analysis

Top Keywords

capsid proteins
12
peptides subtypes
12
subtypes hpv
12
binding affinity
8
hpv capsid
8
subtypes
5
peptides
5
potential applications
4
applications polyoxometalates
4
polyoxometalates discrimination
4

Similar Publications

PEG10 is a retroelement-derived Mart-family gene that is necessary for placentation and has been implicated in neurological disease. PEG10 resembles both retrotransposon and retroviral proteins and forms virus-like particles (VLPs) that can be purified using iodixanol ultracentrifugation. It is hypothesized that formation of VLPs is crucial to the biological roles of PEG10 in reproduction and neurological health.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a devastating autoimmune disease that leads to the destruction of the myelin sheath in the human central nervous system (CNS). Infection by viruses and bacteria has been found to be strongly associated with the onset of MS or its severity. We postulated that the immune system's attack on the myelin sheath could be triggered by viruses and bacteria antigens that resemble myelin sheath components.

View Article and Find Full Text PDF

Epidemiological and Molecular Investigation of Feline Panleukopenia Virus Infection in China.

Viruses

December 2024

Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.

The feline panleukopenia virus (FPV) is a highly contagious virus that affects cats worldwide, characterized by leukopenia, high temperature and diarrhea. Recently, the continuous prevalence and variation of FPV have attracted widespread concern. The aim of this study was to investigate the isolation, genetic evolution, molecular characterization and epidemiological analysis of FPV strains among cats and dogs in China from 2019 to 2024.

View Article and Find Full Text PDF

Coinfections with porcine circovirus types 2, 3, and 4 (PCV2, PCV3, and PCV4) are increasingly being detected in the swine industry. However, there is no commercially available vaccine which prevents coinfection with PCV2, PCV3, and PCV4. The development of a vaccine expressing capsid (Cap) fusion proteins of multiple PCVs represents a promising approach for broadly preventing infection with PCVs.

View Article and Find Full Text PDF

Development of a Synthetic VP1 Protein Peptide-Based ELISA to Detect Antibodies Against Porcine Bocavirus Group 3.

Viruses

December 2024

Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China.

Porcine bocavirus (PBoV), classified within the genus Bocaparvovirus, has been reported worldwide. PBoV has been divided into group 1, group 2, and group 3. PBoV group 3 (G3) viruses are the most prevalent in China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!