Transforming growth factor β-1 (TGFβ-1)-induced phosphorylation of transcription factors Smad2 and Smad3 plays a crucial role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, the molecular regulation of Smad2/Smad3 proteins stability remains a mystery. Here, we show that ubiquitin carboxyl-terminal hydrolase-L5 (UCHL5 or UCH37) de-ubiquitinates both Smad2 and Smad3, up-regulates their stability, and promotes TGFβ-1-induced expression of profibrotic proteins, such as fibronectin (FN) and α-smooth muscle actin (α-SMA). Inhibition or down-regulation of UCHL5 reduced Smad2/Smad3 levels and TGFβ-1-induced the expression of FN and α-SMA in human lung fibroblast. We demonstrate that Smad2 and Smad3 ubiquitination was diminished by over-expression of UCHL5, while it was enhanced by inhibition or down-regulation of UCHL5. UCHL5 is highly expressed in IPF lungs. UCHL5, Smad2, and Smad3 levels were increased in bleomycin-injured lungs. Administration of UCHL5 inhibitor, b-AP15, reduced the expression of FN, type I collagen, Smad2/Smad3, and the deposition of collagen in lung tissues in a bleomycin-induced model of pulmonary fibrosis. Our studies provide a molecular mechanism by which UCHL5 mitigates TGFβ-1 signaling by stabilizing Smad2/Smad3. These data indicate that UCHL5 may contribute to the pathogenesis of IPF and may be a potential therapeutic target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5015047 | PMC |
http://dx.doi.org/10.1038/srep33116 | DOI Listing |
Biomed Chromatogr
February 2025
Department of Pharmacy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
The aim of this study was to investigate the potential mechanism of Lu-Jiao Fang (LJF) inhibiting endothelial-to-mesenchymal transition (EndMT) in pressure overload-induced cardiac fibrosis. Pharmacokinetic behaviors of the ingredients of LJF were evaluated by LC-MS/MS analysis. Then putative pathways by which LJF regulates EndMT were analyzed by network pharmacology and verified in transverse aortic constriction-induced cardiac fibrosis rats.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
Atrial fibrillation (AF) represents the commonly occurring cardiac arrhythmia and the main factor leading to stroke and heart failure. Hydrogen (H2) is a gaseous signaling molecule that has the effects of anti-inflammation and antioxidation. Our study provides evidence that hydrogen decreases susceptibility to AngII-mediated AF together with atrial fibrosis.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea.
Slit1 is a secreted protein that is closely related to cell movement and adhesion. Few studies related to fibrosis exist, and the preponderance of current research is confined to the proliferation and differentiation of neural systems. Hypertrophic scars (HTSs) are delineated by an overproduction of the extracellular matrix (ECM) by activated fibroblasts, leading to anomalous fibrosis, which is a severe sequela of burns.
View Article and Find Full Text PDFBiomol Biomed
December 2024
The Gastroenterology Department, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
Arch Biochem Biophys
December 2024
Medical Biochemistry & Molecular Biology Department, Egypt.
Background: Bleomycin (BLM), an anticancer medication, can exacerbate pulmonary fibrosis by inducing oxidative stress and inflammation. Anti-inflammatory, anti-fibrotic, and antioxidant properties are exhibited by ganoderic acid A (GAA).
Aim: So, we aim to assess GAA's protective impact on lung fibrosis induced via BLM.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!