Although the specific function of SCO2127 remains elusive, it has been assumed that this hypothetical protein plays an important role in carbon catabolite regulation and therefore in antibiotic biosynthesis in Streptomyces coelicolor. To shed light on the functional relationship of SCO2127 to the biosynthesis of actinorhodin, a detailed analysis of the proteins differentially produced between the strain M145 and the Δsco2127 mutant of S. coelicolor was performed. The delayed morphological differentiation and impaired production of actinorhodin showed by the deletion strain were accompanied by increased abundance of gluconeogenic enzymes, as well as downregulation of both glycolysis and acetyl-CoA carboxylase. Repression of mycothiol biosynthetic enzymes was further observed in the absence of SCO2127, in addition to upregulation of hydroxyectoine biosynthetic enzymes and SCO0204, which controls nitrite formation. The data generated in this study reveal that the response regulator SCO0204 greatly contributes to prevent the formation of actinorhodin in the ∆sco2127 mutant, likely through the activation of some proteins associated with oxidative stress that include the nitrite producer SCO0216.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-016-7811-2DOI Listing

Publication Analysis

Top Keywords

hypothetical protein
8
streptomyces coelicolor
8
biosynthetic enzymes
8
deletion hypothetical
4
sco2127
4
protein sco2127
4
sco2127 streptomyces
4
coelicolor allowed
4
allowed identification
4
identification regulator
4

Similar Publications

The microaerophilic Gram-negative bacterium H. pylori is associated with various gastric complications and affects nearly half of the global population. Current sero-diagnostic methods for H.

View Article and Find Full Text PDF

A previously developed algorithm for the preliminary identification of protein proteoforms associated with post-translational modifications (PTMs) based on 2D electrophoresis data (DOI: 10.18097/BMCRM00191) has been used in this study for analysis of experimental data obtained using mice and reported in two papers by different authors. The authors of the first paper identified 8 groups of spots on 2D electrophoretic maps corresponding to 8 proteins with at least two unconcretised proteoforms.

View Article and Find Full Text PDF

Elucidating metabolic pathways through genomic analysis in highly heavy metal-resistant strains.

Heliyon

December 2024

Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia.

The annotated and predicted genomes of five archaeal strains (AS1, AS2, AS8, AS11 and AS19), isolated from Sfax solar saltern sediments (Tunisia) and affiliated with , were performed by RAST webserver (Rapid Annotation using Subsystem Technology) and NCBI prokaryotic genome annotation pipeline (PGAP). The results showed the ability of strains to use a reduced semi-phosphorylative Entner-Doudoroff pathway for glucose degradation and an Embden-Meyerhof one for gluconeogenesis. They could use glucose, fructose, glycerol, and acetate as sole source of carbon and energy.

View Article and Find Full Text PDF

Objectives: Pseudomonas aeruginosa, identified as an ESKAPE pathogen, contributes to severe clinical diseases worldwide and despite its prevalence an effective vaccine or treatment remains elusive. Numerous computational methods are being employed to target hypothetical proteins (HPs). Presently, no studies have predicted multi-epitope vaccines for these HPs.

View Article and Find Full Text PDF

Epoxy metabolites of linoleic acid promote the development of breast cancer via orchestrating PLEC/NFκB1/CXCL9-mediated tumor growth and metastasis.

Cell Death Dis

December 2024

CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.

Breast cancer (BC) is a common malignant tumor in women and requires a comprehensive understanding of its pathogenesis for the development of new therapeutic strategies. Polyunsaturated fatty acids (PUFAs) metabolism-driven inflammation is a causative factor in cancer development. However, the function of PUFAs' metabolism in BC remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!