Polybrominated diphenyl ethers are ubiquitous and toxic contaminants in aquatic environments. The effect of polybrominated diphenyl ether BDE-47 on five species of cyanobacteria, along with their removal ability was investigated. Four species, namely Synechocystis sp., Oscillatoria planctonica, Microcystis flos-aquae and Nostoc sp., were exposed to BDE-47 at concentrations ranging from 0.05 to 1.0 mg L for 14 days, while the exposure time for Pseudanabaena sp. was 30 days. The first four species were very tolerant to BDE-47 while growth and photosynthesis of Pseudanabaena were significantly inhibited by BDE-47 at concentrations over 0.1 mg L. However, this species could recover from the toxicity of high concentrations of BDE-47 after 30 days of exposure, indicating the development of some "resistance" after pre-exposure to 1.0 mg L BDE-47. The "resistant" cells had a higher growth rate, photosynthesis and glutathione S-transferase activity than normal Pseudanabaena cells. The sensitivity of Pseudanabaena to BDE-47 toxicity was affected by its initial filament density, with cultures having a low filament density (2.3 × 10 filaments mL) being up to 14-15 times more sensitive than cultures with a high filament density (13 × 10 filaments mL). All cyanobacteria could remove 70-82% of BDE-47 in their media, with more than 60% of BDE-47 accumulated in cells. This is the first study showing the high tolerance of different cyanobacteria species to BDE-47 toxicity and their removal ability. The study also revealed that the sensitive Pseudanabaena could acquire a "resistance" to BDE-47, which was transferred to the next generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2016.08.109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!