Symmetrical, near-infrared absorbing bacteriochlorin dyads exhibit gradual reduction of their fluorescence (intensity and lifetime) and reactive oxygen species photosensitization efficiency (ROS) with increasing solvent dielectric constant ε. For the directly linked dyad, significant reduction is observed even in solvents of moderate ε, while for the dyad containing a 1,4-phenylene linker, reduction is more parallel to an increase in solvent ε. Bacteriochlorin dyads are promising candidates for development of environmentally responsive fluorophores and ROS sensitizers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269194 | PMC |
http://dx.doi.org/10.1021/acs.orglett.6b02237 | DOI Listing |
Phys Chem Chem Phys
January 2023
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
Bacteriochlorophylls, nature's near-infrared absorbers, play an essential role in energy transfer in photosynthetic antennas and reaction centers. To probe energy-transfer processes akin to those in photosynthetic systems, nine synthetic bacteriochlorin-bacteriochlorin dyads have been prepared wherein the constituent pigments are joined at the -positions by a phenylethyne linker. The phenylethyne linker is an unsymmetric auxochrome, which differentially shifts the excited-state energies of the phenyl- or ethynyl-attached bacteriochlorin constituents in the dyad.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2022
Department of Chemistry, Washington University, St. Louis, Missouri63130-4889, United States.
The impact of vibrational-electronic resonances on the rate of excited-state energy transfer is examined in a set of bacteriochlorin dyads that employ the same phenylethyne linker. The donor/acceptor excited-state energy gap is tuned from ∼200 to ∼1100 cm using peripheral substituents on the donor and acceptor bacteriochlorin macrocycles. Ultrafast energy transfer is observed with rate constants of (0.
View Article and Find Full Text PDFJ Phys Chem A
August 2022
Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States.
Electronic interactions between tetrapyrroles are utilized in natural photosynthetic systems to tune the light-harvesting and energy-/charge-transfer processes in these assemblies. Such interactions also can be employed to tailor the electronic properties of tetrapyrrolic dyads and larger arrays for use in materials science and biomedical research. Here, we have utilized static and time-resolved optical spectroscopy to characterize the optical absorption and emission properties of a set of chlorin and bacteriochlorin dyads with varying degrees of through-bond (TB) and through-space (TS) interactions between the constituent macrocycles.
View Article and Find Full Text PDFJ Chem Phys
October 2020
Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, USA.
The excited-state properties and photoinduced charge-transfer (CT) kinetics in a series of symmetrical and asymmetrical Zn- and Au-ligated meso-meso-connected bacteriochlorin (BChl) complexes are studied computationally. BChl derivatives, which are excellent near-IR absorbing chromophores, are found to play a central role in bacterial photosynthetic reaction centers but are rarely used in artificial solar energy harvesting systems. The optical properties of chemically linked BChl complexes can be tuned by varying the linking group and involving different ligated metal ions.
View Article and Find Full Text PDFChemistry
November 2020
PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.
A series of chlorin-bacteriochlorin dyads (derived from naturally occurring chlorophyll-a and bacteriochlorophyll-a), covalently connected either through the meso-aryl or β-pyrrole position (position-3) via an ester linkage have been synthesized and characterized as a new class of far-red emitting fluorescence resonance energy transfer (FRET) imaging, and heavy atom-lacking singlet oxygen-producing agents. From systematic absorption, fluorescence, electrochemical, and computational studies, the role of chlorin as an energy donor and bacteriochlorin as an energy acceptor in these wide-band-capturing dyads was established. Efficiency of FRET evaluated from spectral overlap was found to be 95 and 98 % for the meso-linked and β-pyrrole-linked dyads, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!