AI Article Synopsis

Article Abstract

The effective delivery of therapeutics and imaging agents to a selected group of cells has been at the forefront of biomedical research. Unfortunately, the identification of the unique cell surface targets for cell selection remains a major challenge, particularly if cells within the selected group are not identical. Here we demonstrate a novel approach to cell section relying on a thermoresponsive peptide-based nanocarrier. The hybrid peptide containing cell-penetrating peptide (CPP) and collagen (COLL) domains is designed to undergo coil-to-helix transition (folding) below physiological temperature. Because only the helical form undergoes effective internalization by the cells, this approach allows effective temperature-discriminate cellular uptake. The cells selected for uptake are locally cooled, thus enabling the carrier to fold and subsequently internalize. Our approach demonstrates a generic method as selected cells could differ from the adjacent cells or could belong to the same cell population. The method is fast (<15 min) and selective; over 99.6% of cells in vitro internalized the peptide carrier at low temperatures (15 °C), while less than 0.2% internalized at 37 °C. In vivo results confirm the high selectivity of the method. The potential clinical applications in mixed cell differentiation carcinoma, most frequently encountered in breast and ovarian cancer, are envisioned.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5177025PMC
http://dx.doi.org/10.1021/acs.analchem.6b02438DOI Listing

Publication Analysis

Top Keywords

hybrid peptide
8
cell selection
8
selected group
8
cells selected
8
cells
6
cell
5
thermoresponsive collagen/cell
4
collagen/cell penetrating
4
penetrating hybrid
4
peptide nanocarrier
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!