The utility of N-heterocyclic carbene ligands in nickel-catalyzed Suzuki-Miyaura cross-coupling of aryl esters and carbamates is investigated. Imidazol-2-ylidene bearing 2-adamantyl groups at its nitrogen atoms generates the most active nickel species among the ligands examined, allowing cross-coupling of a range of aryl carbamates and pivalates. Unlike the previously reported system using tricyclohexylphosphine, this protocol is suitable for the cross-coupling using arylboronic esters in addition to arylboronic acids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.6b01627 | DOI Listing |
Ind Eng Chem Res
January 2025
Department of Chemistry, Physics, and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States.
An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
The functional properties of tetraaryl compounds, M(aryl) (M = transition metal or group 14 element), are dictated not only by their common tetrahedral geometry but also by their central atom. The identity of this atom may serve to modulate the reactivity, electrochemical, magnetic, and optical behavior of the molecular species, or of extended materials built from appropriate tetraaryl building blocks, but this has not yet been systematically evaluated. Toward this goal, here we probe the influence of Os(IV), C, and Si central atoms on the spectroelectrochemical properties of a series of redox-active tetra(ferrocenylaryl) complexes.
View Article and Find Full Text PDFChemSusChem
January 2025
Comenius University FNS: Univerzita Komenskeho v Bratislave Prirodovedecka fakulta, Organic chemistry, Mlynska dolina, Ilkovicova 6, 84215, Bratislava, SLOVAKIA.
Cross-coupling reactions are indispensable for the construction of complex molecular scaffolds. In this work, we developed a sustainable methodology for the cross-coupling reaction of arene thianthrenium salts with aryl boronic acids, which can be effectively realized under mechanochemical conditions. Liquid-assisted grinding (LAG) enabled fast and high-yielding synthesis of a range of biaryls via Pd/RuPhos-catalyzed cross-coupling.
View Article and Find Full Text PDFRSC Adv
January 2025
Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
Due to the presence of the pyridyl directing group, -aryl-2-aminopyridines can quickly form stable complexes with metals, leading to cyclization and functionalization reactions. A large number of N-heterocycles and nitrogen-based molecules can be easily constructed this direct and atom-economical cross-coupling strategy. In this review, we have highlighted the transformations of -aryl-2-aminopyridines in the presence of various transition metal catalysts, such as palladium, rhodium, iridium, ruthenium, cobalt and copper.
View Article and Find Full Text PDFChem Sci
January 2025
University of Regensburg, Institute of Inorganic Chemistry 93040 Regensburg Germany
We present a photocatalytic protocol for the -arylation of carboxylic acids using nickel complexes bearing C8-pyridyl xanthines. Our studies suggest that the underlying mechanism operates independently of external photosensitizers. Stoichiometric experiments and crystallographic studies characterize the catalytically relevant Ni complexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!