The electrochemical cycling performance of vanadium oxide nanotubes (VO-NTs) for Mg-ion insertion/extraction was investigated in acetonitrile (AN) and tetramethylsilane (TMS)-ethyl acetate (EA) electrolytes with Mg(ClO) salt. When cycled in TMS-EA solution, the VO-NT exhibited a higher capacity retention than when cycled in AN solution. The significant degradation of capacity in AN solution resulted from increased charge-transfer resistance caused by the reaction products of the electrolyte during cycling. Mixed TMS-EA solvent systems can increase the cell performance and stability of Mg-electrolytes owing to the higher stability of TMS toward oxidation and the strong Mg-coordination ability of EA. These results indicate that the interfacial stability of the electrolyte during the charging process plays a crucial role in determining the capacity retention of VO-NT for Mg insertion/extraction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b05808 | DOI Listing |
Cureus
November 2024
Department of Biochemistry, All India Institute of Medical Sciences, Punjab, IND.
Aim Biochemistry includes the elaborate study of various biomolecules and intricate mechanisms that first-year medical students find difficult to understand and retain when taught through didactic lectures. Therefore, this study aims to test the effectiveness of jigsaw as a revision module in increasing the knowledge and retention capacity of students in Biochemistry. Materials and methods Eighty students were enrolled in the study.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:
Regenerative medicine is one of the effective approaches for myocardial infarcted (MI) tissue due to the low capacity of heart for regeneration. However, cell therapy with local administration has shown poor cell retention in the targeted area and limited engraftment capacity at the intended location, resulting in inadequate tissue regeneration. The present study involves mesenchymal stem cell-derived exosomes and encapsulated cells in small and injectable calcium alginate microgels by a specialized microfluidic device to decrease inflammation and increase cell retention in the infarcted tissue.
View Article and Find Full Text PDFFood Chem
December 2024
Shandong Province Grilled Chicken Co., Ltd., Dezhou 253000, China.
Effects of varying levels of arginine (Arg) and aspartic acid (Asp) on the water-holding capacity (WHC) and eating quality of marinated pork meat were investigated. The addition of Arg significantly enhanced the WHC of marinated pork meat (P < 0.05) due to the increased pH levels of the meat.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China. Electronic address:
The reversibility and stability of aqueous zinc-ion batteries (AZIBs) are largely limited by free-water-induced side reactions (e.g., hydrogen evolution and zinc corrosion) and negative zinc dendrite growth.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil and Smart Construction Engineering, Shantou University, Shantou, 515063, Guangdong, China.
Saline soil is widely distributed in China and poses significant challenges to engineering construction due to its harmful effects, such as salt heaving, dissolution collapse, and frost heaving. The Microbial-Induced Calcite Precipitation (MICP) method is an emerging environmental-friendly modification that can reduce or eliminate the environmental and engineering hazards of saline soil. To verify the feasibility of the MICP method for improving the properties of saline soil, laboratory tests were conducted to study the effects of salt content, activated carbon content and freeze-thaw cycles on the compression and water retention behavior of MICP modified saline soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!