The efficiency of lipid nanoparticle uptake across cellular membranes is strongly dependent on the very first interaction step. Detailed understanding of this step is in part hampered by the large heterogeneity in the physicochemical properties of lipid nanoparticles, such as liposomes, making conventional ensemble-averaging methods too blunt to address details of this complex process. Here, we contribute a means to explore whether individual liposomes become deformed upon binding to fluid cell-membrane mimics. This was accomplished by using hydrodynamic forces to control the propulsion of nanoscale liposomes electrostatically attracted to a supported lipid bilayer. In this way, the size of individual liposomes could be determined by simultaneously measuring both their individual drift velocity and diffusivity, revealing that for a radius of ∼45 nm, a close agreement with dynamic light scattering data was observed, while larger liposomes (radius ∼75 nm) displayed a significant deformation unless composed of a gel-phase lipid. The relevance of being able to extract this type of information is discussed in the context of membrane fusion and cellular uptake.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.6b04572DOI Listing

Publication Analysis

Top Keywords

liposomes electrostatically
8
electrostatically attracted
8
individual liposomes
8
liposomes
6
lipid
5
hydrodynamic propulsion
4
propulsion liposomes
4
attracted lipid
4
lipid membrane
4
membrane reveals
4

Similar Publications

Anionic polysaccharides as delivery carriers for cancer therapy and theranostics: An overview of significance.

Int J Biol Macromol

December 2024

Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan. Electronic address:

Recently, cancer therapy has witnessed remarkable advancements with a growing focus on precision medicine and targeted drug delivery strategies. The application of anionic polysaccharides has gained traction in various drug delivery systems. Anionic polysaccharides have emerged as promising delivery carriers in cancer therapy and theranostics, offering numerous advantages such as biocompatibility, low toxicity, and the ability to encapsulate and deliver therapeutic agents to tumor sites with high specificity.

View Article and Find Full Text PDF

Bacterial removal using liposomes and an anionic adsorber.

J Biosci Bioeng

December 2024

Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

Extracorporeal blood purification techniques using magnetic beads, which physically remove bacteria, fungi, viruses, and cytokines (disease agents) from the blood causing sepsis, have been studied. However, magnetic bead influx, which causes hemolysis and cytotoxicity, is an important issue. This study proposed a novel method for removing Escherichia coli from the blood using liposomes with high biocompatibility.

View Article and Find Full Text PDF

An electrostatic encapsulation strategy to motivate 3D-printed polyelectrolyte scaffolds for repair of osteoporotic bone defects.

Bioact Mater

April 2025

Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China.

Repair of osteoporotic bone defects (OBD) remains a clinical challenge due to dysregulated bone homeostasis, characterized by impaired osteogenesis and excessive osteoclast activity. While drug-loaded 3D-printed scaffolds hold great potential in the restoration of bone homeostasis for enhanced OBD repair, achieving the controlled release and targeted delivery of drugs in a 3D-printed scaffold is still unmet. Herein, we developed an electrostatic encapsulation strategy to motivate 3D-printed polyelectrolyte scaffolds (APS@P) with bone-targeting liposome formulation of salvianolic acid B (SAB-BTL).

View Article and Find Full Text PDF

A zwitterionic, stimuli-responsive liposomal system was meticulously designed for the precise and controlled delivery of curcumin, leveraging enzyme-specific and hyperthermic stimuli to enhance therapeutic outcomes. This platform is specifically engineered to release curcumin in response to , an enzyme that degrades phospholipids, enabling highly targeted and site-specific drug release. Mild hyperthermia (40 °C) further enhances membrane permeability and activates thermosensitive carriers, optimizing drug delivery.

View Article and Find Full Text PDF

The gut-bone axis is a promising target for osteoporosis treatment, yet existing delivery systems lack precise targeting. Herein, an oral hydrogel microsphere system (E7-Lipo@Alg/Cs) is developed using gas microfluidic and ionic crosslinking technologies to deliver drugs to bone marrow mesenchymal stem cells (BMSCs) via the gut-bone axis, regulating mitochondrial aging. A BMSC-affine peptide is conjugated onto liposomes encapsulating Fisetin, followed by incorporation into alginate-calcium hydrogel microspheres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!