Within the last decade, fully disposable centrifuge technologies, fluidized-bed centrifuges (FBC), have been introduced to the biologics industry. The FBC has found a niche in cell therapy where it is used to collect, concentrate, and then wash mammalian cell product while continuously discarding centrate. The goal of this research was to determine optimum FBC conditions for recovery of live cells, and to develop a mathematical model that can assist with process scaleup. Cell losses can occur during bed formation via flow channels within the bed. Experimental results with the kSep400 centrifuge indicate that, for a given volume processed: the bed height (a bed compactness indicator) is affected by RPM and flowrate, and dead cells are selectively removed during operation. To explain these results, two modeling approaches were used: (i) equating the centrifugal and inertial forces on the cells (i.e., a force balance model or FBM) and (ii) a two-phase computational fluid dynamics (CFD) model to predict liquid flow patterns and cell retention in the bowl. Both models predicted bed height vs. time reasonably well, though the CFD model proved more accurate. The flow patterns predicted by CFD indicate a Coriolis-driven flow that enhances uniformity of cells in the bed and may lead to cell losses in the outflow over time. The CFD-predicted loss of viable cells and selective removal of the dead cells generally agreed with experimental trends, but did over-predict dead cell loss by up to 3-fold for some of the conditions. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1520-1530, 2016.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/btpr.2365 | DOI Listing |
Microb Pathog
January 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China. Electronic address:
The spread of Porcine contagious pleuropneumonia (PCP), a severe disease that occurs in pigs caused by Actinobacillus pleuropneumoniae (APP), remains a threat to the porcine farms and has been known to cause severe economic losses. Serum amyloid A (SAA) is an acute-phase protein rapidly expressed in response to infection and inflammation in vertebrates. This study aimed to investigate the function of SAA3 in bacterial infections.
View Article and Find Full Text PDFPharmacoecon Open
January 2025
Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
Objectives: Immune checkpoint inhibitor (ICI)-containing treatment is currently prescribed as first-line treatment for all patients with advanced non-small cell lung cancer (NSCLC) without targetable driver mutations. However, only 30-45% of patients show no progression within 12 months after treatment start. Various biomarkers are being studied to save costly and potentially harmful treatment in non-responders.
View Article and Find Full Text PDFNat Commun
January 2025
Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses in the global swine industry due to its high genetic diversity and different virulence levels, which complicate disease management and vaccine development. This study evaluated longitudinal changes in the immune cell composition of bronchoalveolar lavage fluid and the clinical outcomes across PRRSV strains with varying virulence, using techniques including single-cell transcriptomics. In highly virulent infection, faster viral replication results in an earlier peak lung-damage time point, marked by significant interstitial pneumonia, a significant decrease in macrophages, and an influx of lymphocytes.
View Article and Find Full Text PDFToxicol Ind Health
January 2025
Department of of Toxicology, Faculty of Pharmacy, Istanbul Okan University, Istanbul, Turkey.
Di-2-(ethylhexyl)phthalate (DEHP) is a phthalate derivative used extensively in a wide range of materials, such as medical devices, toys, cosmetics, and personal care products. Many mechanisms, including epigenetics, may be involved in the effects of phthalates on brain development. In this study, Sprague-Dawley male rats were obtained 21-23 days after their birth (post-weaning) and were exposed to DEHP during the prepubertal period with low-dose DEHP (DEHP-L, 30 mg/kg/day) and high-dose DEHP (DEHP-H, 60 mg/kg/day, 37 days) until the end of adolescence (PND 60).
View Article and Find Full Text PDFFront Vet Sci
January 2025
GenesisEgo, Seoul, Republic of Korea.
Hemangiosarcoma is a highly malignant tumor commonly affecting canines, originating from endothelial cells that line blood vessels, underscoring the importance of early detection. This canine cancer is analogous to human angiosarcoma, and the development of liquid biopsies leveraging cell-free DNA (cfDNA) represents a promising step forward in early cancer diagnosis. In this study, we utilized Whole Genome Sequencing (WGS) to analyze fragment sizes and copy number alterations (CNAs) in cfDNA from 21 hemangiosarcoma-affected and 36 healthy dogs, aiming to enhance early cancer detection accuracy through machine learning models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!