σ factors provide RNA polymerase with promoter specificity in bacteria. Some σ factors require activation in order to interact with RNA polymerase and transcribe target genes. The Extra-Cytoplasmic Function (ECF) σ factor, σV, is encoded by several Gram-positive bacteria and is specifically activated by lysozyme. This activation requires the proteolytic destruction of the anti-σ factor RsiV via a process of regulated intramembrane proteolysis (RIP). In many cases proteases that cleave at site-1 are thought to directly sense a signal and initiate the RIP process. We previously suggested binding of lysozyme to RsiV initiated the proteolytic destruction of RsiV and activation of σV. Here we determined the X-ray crystal structure of the RsiV-lysozyme complex at 2.3 Å which revealed that RsiV and lysozyme make extensive contacts. We constructed RsiV mutants with altered abilities to bind lysozyme. We find that mutants that are unable to bind lysozyme block site-1 cleavage of RsiV and σV activation in response to lysozyme. Taken together these data demonstrate that RsiV is a receptor for lysozyme and binding of RsiV to lysozyme is required for σV activation. In addition, the co-structure revealed that RsiV binds to the lysozyme active site pocket. We provide evidence that in addition to acting as a sensor for the presence of lysozyme, RsiV also inhibits lysozyme activity. Thus we have demonstrated that RsiV is a protein with multiple functions. RsiV inhibits σV activity in the absence of lysozyme, RsiV binds lysozyme triggering σV activation and RsiV inhibits the enzymatic activity of lysozyme.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5014341PMC
http://dx.doi.org/10.1371/journal.pgen.1006287DOI Listing

Publication Analysis

Top Keywords

rsiv
16
lysozyme
16
lysozyme rsiv
16
σv activation
16
rsiv inhibits
12
factor rsiv
8
receptor lysozyme
8
binding lysozyme
8
required σv
8
rna polymerase
8

Similar Publications

Red sea bream iridovirus (RSIV) occurs mainly at high water temperatures and infects more than 30 different species of fish. In Asia, infected fish cause mass mortality every year. Molecular diagnostics is a technology that efficiently detects and identifies a wide range of fish pathogens through rapid and sensitive analysis of their genetic material.

View Article and Find Full Text PDF

In this study, sufaid chonsa mango pulp aqueous extracts from different ripening stages (RS I-V) was utilized to synthesize silver nanoparticles (Ag NPs). The Ag NPs were characterized using UV-vis spectrometry, X-ray diffraction analysis (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy dispersice X-ray analysis (EDX). Additionally, antioxidative potential and phenolic and flavonoid-like properties of synthesized Ag NPs were also accessed.

View Article and Find Full Text PDF

iridovirus (LMIV) is a variant strain of red sea bream iridovirus (RSIV), causing serious economic losses in aquaculture. Claudins (CLDNs) are major components of tight junctions (TJs) forming an important line of defense against pathogens. Our pilot miRNA-mRNA joint analysis indicated the degradation of CLDN3, as well as its interaction with miR-181a during LMIV infection.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a genetic disease caused by mutations in the (cystic fibrosis transmembrane conductance regulator) gene. Although CF is a multiorgan disease, the leading causes of morbidity and mortality are related to progressive lung disease. Current understanding of the effects of the broad spectrum of mutations on CFTR function has allowed for the development of CFTR modulator therapies.

View Article and Find Full Text PDF

Rationale And Objective: Cystic fibrosis (CF) is caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene. CFTR modulators offer significant improvements, but approximately 10% of patients remain nonresponsive or are intolerant. This study provides an analysis of rSIV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!