Unlabelled: Salmonella enterica pathogenicity island 1 (SPI-1) encodes proteins required for invasion of gut epithelial cells. The timing of invasion is tightly controlled by a complex regulatory network. The transcription factor (TF) HilD is the master regulator of this process and senses environmental signals associated with invasion. HilD activates transcription of genes within and outside SPI-1, including six other TFs. Thus, the transcriptional program associated with host cell invasion is controlled by at least 7 TFs. However, very few of the regulatory targets are known for these TFs, and the extent of the regulatory network is unclear. In this study, we used complementary genomic approaches to map the direct regulatory targets of all 7 TFs. Our data reveal a highly complex and interconnected network that includes many previously undescribed regulatory targets. Moreover, the network extends well beyond the 7 TFs, due to the inclusion of many additional TFs and noncoding RNAs. By comparing gene expression profiles of regulatory targets for the 7 TFs, we identified many uncharacterized genes that are likely to play direct roles in invasion. We also uncovered cross talk between SPI-1 regulation and other regulatory pathways, which, in turn, identified gene clusters that likely share related functions. Our data are freely available through an intuitive online browser and represent a valuable resource for the bacterial research community.
Importance: Invasion of epithelial cells is an early step during infection by Salmonella enterica and requires secretion of specific proteins into host cells via a type III secretion system (T3SS). Most T3SS-associated proteins required for invasion are encoded in a horizontally acquired genomic locus known as Salmonella pathogenicity island 1 (SPI-1). Multiple regulators respond to environmental signals to ensure appropriate timing of SPI-1 gene expression. In particular, there are seven transcription regulators that are known to be involved in coordinating expression of SPI-1 genes. We have used complementary genome-scale approaches to map the gene targets of these seven regulators. Our data reveal a highly complex and interconnected regulatory network that includes many previously undescribed target genes. Moreover, our data functionally implicate many uncharacterized genes in the invasion process and reveal cross talk between SPI-1 regulation and other regulatory pathways. All datasets are freely available through an intuitive online browser.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013294 | PMC |
http://dx.doi.org/10.1128/mBio.01024-16 | DOI Listing |
Am J Cancer Res
December 2024
Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, Zhejiang, China.
Esophageal squamous cell carcinoma (ESCC), the most predominant subtype of esophageal cancer, is notorious for its high lymph node metastatic potential and poor prognosis. Growing evidence has demonstrated crucial function of circRNAs in human malignancies. However, the knowledge of circRNAs in lymph node metastasis of ESCC is still inadequate.
View Article and Find Full Text PDFThe maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells.
View Article and Find Full Text PDFAcute myeloid leukemias (AMLs) have an overall poor prognosis with many high-risk cases co-opting stem cell gene regulatory programs, yet the mechanisms through which this occurs remain poorly understood. Increased expression of the stem cell transcription factor, MECOM, underlies one key driver mechanism in largely incurable AMLs. How MECOM results in such aggressive AML phenotypes remains unknown.
View Article and Find Full Text PDFComputerized chest tomography (CT)-guided screening in populations at risk for lung cancer has increased the detection of preinvasive subsolid nodules, which progress to solid invasive adenocarcinoma. Despite the clinical significance, there is a lack of effective therapies for intercepting the progression of preinvasive to invasive adenocarcinoma. To uncover determinants of early disease emergence and progression, we used integrated single-cell approaches, including scRNA-seq, multiplexed imaging mass cytometry and spatial transcriptomics, to construct the first high-resolution map of the composition, lineage/functional states, developmental trajectories and multicellular crosstalk networks from microdissected non-solid (preinvasive) and solid compartments (invasive) of individual part-solid nodules.
View Article and Find Full Text PDFGene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!